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ABSTRACT 
This paper discusses a Domain Specific Language (DSL) that 

has been developed to enable implementation of concepts of 

discrete mathematics. A library of data types and functions 

provides functionality which is frequently required by users. 

Covering the areas of Mathematical Logic, Set Theory, 

Functions, Graph Theory, Number Theory, Linear Algebra 

and Combinatorics, the language’s syntax is close to the 

actual notation used in the specific fields. 
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1. INTRODUCTION 

1.1 Domain-Specific Languages 
A programming language can be defined as a language that is 

used to execute instructions and algorithms on a machine. 

These instructions or algorithms are represented as programs 

and have the properties of reliability, robustness, usability, 

portability, maintainability and efficiency. 

A Domain-Specific Language (DSL) is a programming 

language that is targeted towards representing problems and 

the solutions of a particular domain or area [1]. By contrast, a 

General Programming Language (GPL) is used for developing 

software in a variety of application domains. Examples of 

commonly used DSLs are HTML, CSS, Verilog, LaTeX, 

SQL, AutoCAD and YACC. On the other hand, languages 

such as C, Java, Perl, Python and Ruby are examples of GPLs. 

1.2 Characteristics of DSLs 
A pervasive characteristic of DSLs is that they have a central 

and well-defined domain, allowing users to focus on the 

jargon of the problem domain, while screening away the 

complex internal operations of a system [2]. Since DSLs are 

used for a specific problem domain, they tend to have a clear 

notation for it, using meaningful symbols that are easy to 

enter using a keyboard or mouse. This results in a smooth 

learning curve for domain experts, who may not be adept in 

core programming skills. DSLs also empower them to easily 

comprehend and specify logic of their applications, and also 

maintain them with changing requirements. Thus, the 

popularity of a well-designed DSL lies in its capability of 

improving users’ productivity and communication among 

domain experts. 

1.3 When to create DSLs 
Creating a DSL is worthwhile when the language allows 

particular types of problems or solutions to be expressed more 

clearly than what existing languages would allow, and also 

when the type of problem in question reappears sufficiently 

often. Repetitive tasks to be performed are readily defined in 

DSLs with custom libraries whose scopes are restricted to the 

domain. Hence, these tasks need not be defined from scratch 

each time. This increases users’ productivity since DSLs 

require lesser time for programming and maintenance, as 

compared to GPLs. 

1.4 Classification of DSLs 
A recognized method to classify DSLs is to broadly 

categorize them as either internal or external [1]. An internal 

DSL is one that uses the infrastructure of a base or host 

language to build domain specific semantics on top of it. 

Internal DSLs are usually implemented in the form of a 

library for the base language and are also called embedded 

DSLs. It is preferable to develop internal DSLs if domain-

specific constructs need not be strictly obeyed, or if domain-

specific transformations and optimizations are not required 

[3]. External DSLs are developed as entirely new stand-alone 

DSLs, i.e. independent of a base language. This involves 

implementing stages such as lexical analysis, parsing, 

interpretation, compilation and code generation [4]. Thus, 

external DSLs have their own syntax and semantics. 

1.5 Phases of DSL development 
DSL development generally involves the following phases 

[3]: Decision, Analysis, Design, Implementation and 

Deployment. The decision phase is one in which the reasons 

for DSL development are weighed, with consideration of 

long-term goals along with economic and maintenance 

factors. In the analysis phase of DSL development, the 

problem domain is identified and domain knowledge is 

gathered. This requires input from domain experts and/or the 

availability of documents or code from which domain 

knowledge can be obtained. In the design phase, it is 

determined how the DSL would be implemented - whether it 

would be an internal or an external DSL. Following the design 

phase is the implementation phase, in which a suitable 

implementation approach is chosen. The DSL could be 

developed in the following approaches - interpreted, 

compiled, preprocessed, embedded, or even a hybrid of these. 

The DSL could be deployed in the form of library packages 

for base languages, or as source code to be built by the user, 

or even as a setup script along with installation files. While 

developing our DSL, we have followed guidelines mentioned 

in [5]. 

1.6 DSL for Discrete Mathematics 
The domain of the developed DSL is discrete mathematics. 

The DSL consists of a library of functions and data structures 

for the branches of Set theory, Graph theory, Mathematical 

logic, Number theory, Linear algebra, Combinatorics and 

Functions. The language is a Preprocessed DSL, with the 
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Haskell programming language as the base language and 

Glasgow Haskell Compiler (GHC) as the compiler. The 

reason for selecting Haskell is that it is purely functional and 

hence has no side effects. Haskell also provides a modern type 

system which incorporates features like type classes and 

generalized algebraic data types, giving it an edge over other 

languages. Like all functional programming languages, 

Haskell’s notation is suited for mathematical representations. 

Apart from aiding mathematicians and physicists, the 

developed DSL would be useful in studying and describing 

objects and problems in branches of computer science, such as 

algorithms, programming languages, cryptography, automated 

theorem proving, and software development. 

The layout of this paper is as follows: Section 2 describes the 

design of our DSL, including the benefits of functional 

programming and Haskell. In Section 3, the features of 

various modules for discrete mathematics included in the 

library are explained. Section 4 contains description of the 

library’s modules, sample results of a few functions from 

these modules and outputs of applications developed using the 

DSL. Towards the end, in Sections 5 and 6, the paper is 

concluded after giving a view of the future scope. 

2. DESIGN 

2.1 Functional Programming Paradigm 
In contrast to the imperative programming style, found in 

languages such as C, Java, Python and Ruby, the functional 

programming paradigm treats computation as the evaluation 

of mathematical functions and avoids state and mutable data 

[6]. Imperative functions suffer from side-effects, i.e. they can 

change the internal state of a program because they lack 

referential transparency. This means that an expression can 

result in different values at different times, depending on the 

state of the executing program. In functional languages devoid 

of side-effects, any evaluation strategy can be used, giving 

freedom to reorder or combine evaluation of expressions in a 

program. Since data is considered to be immutable, repeated 

modifications or updates to a value in functional programming 

languages lead to generation of new values every time. 

As functional programming languages typically define 

programs and subroutines as mathematical functions, they are 

an ideal choice for developing mathematical tools. The 

advantage of using functional languages lies in the notion that 

they allow users to think mathematically, rather than rely on 

the workings of the underlying machine [7]. Besides, in the 

functional programming paradigm, functions are first-class 

objects, i.e. they can be passed as arguments to other 

functions, be returned from other functions and be assigned to 

variables and data structures. Functional languages provide 

the concept of higher order functions, which are functions that 

take other functions as inputs or return other functions as 

results. Moreover, functional languages result in shorter 

program codes, thereby easing maintenance and leading to 

higher programmer productivity. 

2.2 Haskell 
Apart from having the advantages of being a purely functional 

programming language, the benefits of using Haskell as a base 

language are [8] [9]: 

2.2.1 Lazy Evaluation 
Lazy evaluation or call-by-need is an evaluation strategy in 

which the evaluation of an expression is delayed until its 

value is actually needed and in which repeated evaluations are 

avoided. As a result, there is an increase in performance due 

to the avoidance of needless calculations and error conditions 

while evaluating compound expressions. Another advantage 

of lazy evaluation is construction of potentially infinite data 

structures. For example, the Haskell statement a = [1..] 

defines an infinite-length list of natural numbers. This feature 

lends itself to the creation of infinite sets in the DSL. 

2.2.2 Expressive Type System 
In Haskell, manipulation of complex data structures is made 

convenient and expressive with the provision of creating and 

using algebraic data types and performing pattern matching. 

Strong compile-time type checking makes programs more 

reliable, while type inference frees the programmer from the 

need to manually declare types to the compiler. 

2.2.3 Smart Garbage Collection 
Because Haskell is a purely functional language, data is 

immutable and all iterations of a recursive computation create 

a new value. Hence, computations produce more memory 

garbage than conventional imperative languages. This is 

easily handled in the DSL as GHC is efficient at garbage 

collection. 

2.2.4 Polymorphic Types and Functions 
Haskell supports parametric polymorphism and ad-hoc 

polymorphism. Parametric polymorphism refers to when the 

type of a value contains one or more (unconstrained) type 

variables, so that the value may adopt any type that results 

from substituting those variables with concrete types. Ad-hoc 

polymorphism refers to when a value is able to adopt any one 

of several types because it, or a value it uses, has been given a 

separate definition for each of those types. Polymorphism is 

defined for functions as well. This means that functions can 

take the same number of arguments as those of different data 

types. For example, a permutation function can take as input a 

list of integers, floating point numbers, strings or any other 

data type and the same set of operations would be performed 

on the input, irrespective of the type. 

2.2.5 List Comprehensions 
List comprehensions in Haskell bear close resemblance to the 

notation used for Set definitions. For instance, to obtain a list 

of squares of positive integers, the Haskell code is squares 

= [x^2 | x <- [1..]]. This is similar to the Set theory 

notation: squares = {x2 | x ϵ {1, 2, ... ∞}} 

2.2.6 Extensibility 
Haskell was built keeping in mind the extensibility required 

for modern functional programming languages. This allows 

creation of user defined functions, types, modules, etc. for the 

DSL. 

2.3 Proposed Design Pattern 
The disadvantage of embedded Domain Specific Languages is 

that their syntax and semantics are same as that of the base 

language. Thus, in order to use the embedded DSL, the users 

must be familiar with programming in the base language. The 

syntax of our DSL is kept close to the notation followed for 

discrete mathematics by implementing it as a Preprocessed 

Domain Specific Language. Apart from a library of modules 

for various concepts of discrete mathematics, the DSL 

includes a syntactic preprocessor which translates programs 

written in the DSL into equivalent Haskell representations. It 

is advantageous to use this approach for development as it 
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allows the new language to have its own syntax, one which 

need not vary much from that of Haskell’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Implementation design pattern for the DSL 

The proposed design pattern is shown in Figure 1. A 

preprocessor translates the source code written in the DSL 

into an equivalent Haskell representation. The generated 

Haskell code is then compiled using GHC, while importing 

required modules from the library, to produce an executable 

binary file. GHC conveniently provides command-line 

options for running a custom preprocessor over a source file 

[10]. If the preprocessor is named cmd, then compiling by 

using the options -F -pgmF cmd, followed by the source 

file’s name, allows conversion of code in the source file into 

Haskell code. The preprocessor accepts at least three 

arguments: the first argument is the name of the original 

source file, the second is the name of the file holding the 

input, and the third is the name of the file where cmd should 

write its output to. 

2.4 System Requirements 
To be able to use the DSL comfortably, a user’s system 

should be able to compile and run Haskell. For this, the 

system must have at least 128 MB of memory, 200 MB of 

disk space and GHC version 7.0.4 or later. 

3. PROPOSED MODULES 

3.1 Mathematical Logic 
Logic is a vital topic of discrete mathematics, with 

applications in foundations of mathematics, formal logic 

systems and proofs. Often, set theory, model theory and 

recursion theory are considered as subsections of logic. In the 

DSL, logical operators and quantifiers from propositional 

logic, Boolean algebra and predicate logic are supported. This 

includes operators such as negation (NOT), conjunction 

(AND), disjunction (OR), exclusive disjunction (XOR), 

inverse conjunction (NAND), inverse disjunction (NOR), 

inverse exclusive disjunction (XNOR), logical implication 

(if...then), logical equality (iff), universal quantifier (for all) 

and existential quantifier (there exists some) and parentheses - 

‘(’ and ‘)’. Haskell provides a unary Boolean negation 

function (not) and binary operators for conjunction (&&) and 

disjunction (||), allowing development of other operators 

using these. Besides these, in Haskell, the universal and 

existential quantifiers are given by ‘forall’ and ‘exists’, 

respectively. The library module for mathematical logic also 

contains functions for applying the operations mentioned on 

lists of Boolean values. 

3.2 Set Theory 
According to Georg Cantor, the founder of set theory, a set is 

a gathering together into a whole of definite, distinct objects 

of our perception and of our thought - which are called 

elements of the set. The module currently focuses on naive set 

theory, operations on sets, relations, properties of relations 

and closures. Later, functionality would be added for groups, 

rings, fields, group-theoretic lattices and order-theoretic 

lattices, which find applications in cryptography and 

computational physics. 

For sets, the module on set theory provides users with support 

for concepts such as checking for membership, empty/null set, 

subset, superset, generating power sets, finding cardinality, set 

difference, determining equality of sets, calculating Cartesian 

product, union of two sets, union of a list of sets, intersection 

of two sets, intersection of a list of sets, checking if two sets 

or a list of sets are disjoint, and mapping functions to sets. 

Working on sets is eased immensely with the provision of lists 

and list comprehension in Haskell. 

Relations are sets of ordered pairs from elements of two sets, 

and are also called binary relations. The module for set theory 

in the library of the DSL contains functions for checking 

properties of relations. Important among these are those for 

checking if a relation is reflexive, symmetric, asymmetric, 

anti-symmetric, transitive, equivalence, partial order (weak or 

strict) and total order (weak or strict). With these as a base, 

functions for creating reflexive, symmetric and transitive 

closures are also developed and included in the library. As 

relations are essentially sets at their core, they can be 

combined by the operations of union, intersection, difference 

and composition. Composition also allows calculating powers 

of a relation and thus, the determination of transitive closures. 

The module also contains functions to check if a relation is a 

weak partial order, strong partial order, weak total order or 

strong total order. 

3.3 Functions 
Functions are algorithms or formulas which give certain 

values as output to parameters passed as input. The set of 

values that a function can take as input is called the domain of 

that function, and the set of values that a function can produce 

as its output is called the co-domain (or range) of that 

function. 

Since the base language for the DSL is Haskell, a functional 

programming language, no additional support is required to be 

provided as such. To use composite functions in Haskell, a 

user has to simply represent them as (f . g) x, where f and g 

are the two functions, applied on the value x, and is read as “f 

of g of x”. Composite functions can be made up of more than 

two functions. The constituent functions need only be 

DSL Program 

Preprocessor 

Library 

Executable 

GHC 

Haskell Code 
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a 
c 

b 

d 

a 
c 

b 

d 

separated by the dot operator. For example, (f . g . h . i) x is 

the composition of functions f, g, h and i. 

3.4 Graph Theory 
Considered the prime objects of study in discrete 

mathematics, and ubiquitous models for natural as well as 

man-made structures, graphs and trees are an important 

component of the DSL. This module provides support for 

users in computer science for studying networks, flow of 

computation, social network analysis, etc. In mathematics it 

would help users working with geometry, topology and group 

theory. 

Graphs can be formally represented as the triple G = (V, E, ϕ), 

where V is a finite set of vertices, E is the finite set of edges 

and ϕ is the incidence function, with domain E and co-domain 

P2(V). Here, P2(V) represents the two-element subset of the 

power set P(V).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: An undirected graph with four nodes and three 

edges 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A graph with directed edges 

The graph in Figure 2 is represented as G = (V, E, ϕ), such 

that V = {A, B, C}, E = {a, b, c, d} and ϕ = {(A, B), (A, B), 

(A, C), (B, C)}. Graphs may also be directed, in which case, 

the co-domain of ϕ would become V*V. An example of a 

directed graph can be G = (V, E, ϕ), such that V = {A, B, C}, 

E = {a, b, c, d} and ϕ = {(A, B), (B, A), (A, C), (C, B)}. This 

graph is shown in Figure 3. 

Important graph operations such as finding in-degree and out-

degree of vertices, finding nodes adjacent to a given node, 

checking for cycles, calculating union of graphs, determining 

if a graph is a subgraph of another, finding existence of Euler 

paths, Euler circuits, Hamiltonian paths and Hamiltonian 

circuits are included in the module for graph theory in the 

DSL’s library as well. Apart from these operations, the library 

also contains algorithms for Dijkstra’s shortest path, Prim’s 

and Kruskal’s Minimum Spanning Tree algorithms, Depth-

First Search, and Breadth-First Search. 

This library module also contains functionality for Trees, 

primarily in the form of Binary Trees. It also contains 

frequently used functions such as in-order, pre-order and post-

order tree traversals, inserting nodes in a tree, finding total 

number of nodes, searching for a particular node using Binary 

Search, determining height of a tree, checking if a tree is 

balanced and calculating depth of a node. 

3.5 Number Theory 
Number theory is one of the oldest and largest branches of 

mathematics. It primarily deals with the study of integers, but 

it also involves studying prime numbers, rational numbers and 

equations. Some applications of concepts in number theory 

are finding solutions to simultaneous linear equations, 

numerical analysis, group theory, field theory and elliptic 

curve cryptography. 

The module for number theory covers generation of prime 

numbers using Sieve of Eratosthenes, primality testing using 

trial division and Miller-Rabin test, prime factorization of 

integers and random number generation. This module also 

contains functions for Fibonacci numbers, including 

generating a list of Fibonacci terms and finding the nth term 

of the Fibonacci series. 

Elementary number theory consists of base/radix operations 

and manipulations. Accordingly, the module provides support 

for handling bases ranging up from 1 to any integer. This 

includes operations of addition, subtraction, multiplication, 

division and exponentiation in all bases, apart from 

conversion of numbers from a particular base to another. 

Another important part of number theory is modular 

arithmetic. The DSL’s library supports solving linear 

congruence relations of the form ax ≡ b (mod m) and also 

evaluation of modular operations such as addition, 

multiplication and exponentiation. 

3.6 Linear Algebra 
The branch of linear algebra deals with vector spaces and 

linear mappings between these spaces. These are used to 

represent systems of linear equations in multiple unknowns. 

Combined with calculus, linear algebra facilitates the solution 

of differential equations. Linear algebra is applied in quantum 

mechanics, systems using the Fourier series, and several fields 

where simultaneous linear equations need to be solved. 

The module for linear algebra in the DSL’s library contains 

data structures for Vectors and Matrices, which are the 

essence of linear algebra. Vectors are represented as n-valued 

tuples <v1, v2 ... vn>, and n×m Matrices as [row1, 

row2 ... rown], where rowi = [ai1, ai2 ... aim] 

and aij is an element. For example, consider the examples of 

a vector used in three-dimensional Cartesian system: Vector 

<3,2,-7> and the third order unit matrix: Matrix 

[[1,0,0], [0,1,0], [0,0,1]]. Operations such as 

finding the order of a matrix, calculating trace, transpose, 

determinant, inverse, multiplication, division, addition, 

subtraction and power of matrices are frequently applied in 

A 

C B 

A 

C B 
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matrix theory, and functions for the same have been included 

in the library module. 

The module also contains functions for checking properties of 

a matrix or whether a matrix is of a certain type. Some of 

these include checking if a matrix is symmetric, skew-

symmetric, orthogonal, involutory, 0/1, unit/identity matrix, a 

zero matrix or a one matrix. In addition, a mapping function 

for matrices allows the application of a single function to all 

the elements of a matrix. The module contains functions for 

generating unit matrices of order n, m×n zero and one 

matrices. 

For vectors, functions are developed for addition, subtraction, 

multiplication (scalar/dot/inner product, vector product, scalar 

triple product and vector triple product), calculating 

magnitude of a vector, calculating angle between two vectors, 

mapping a function to a vector, checking if a vector is a unit 

vector, determining order of vectors and extracting an element 

or even a range of elements from a vector. The module also 

contains functions to find sum and difference of a list of 

Vectors. 

3.7 Combinatorics 
This branch of mathematics deals with the study of countable 

discrete structures. This involves counting the structures, 

determining criteria, and constructing and analyzing objects 

satisfying these criteria. In computer science, combinatorics is 

used frequently in analysis of algorithms to obtain estimates 

and formulas. 

For users involved in computational combinatorics, this DSL 

would be helpful as it has a module consisting of frequently 

used functions such as those to find factorials, permutations 

and combinations, generate permutation and combination lists 

and also to generate random permutations using the Fisher-

Yates/Knuth shuffle algorithm. 

4. IMPLEMENTATION AND RESULTS 
This section describes modules from the DSL’s library, 

including declaration of these modules and a few sample 

functions with results for every module. In addition, this 

section also contains results of applications developed using 

the DSL. 

4.1 Mathematical Logic 
The module for mathematical logic contains the following 

declaration for exporting functions to users’ programs: 

module MPL.Logic.Logic 

( 

 and', 

 or', 

 xor, 

 xnor, 

 nand, 

 nor, 

 equals, 

 implies, 

 (/\), 

 (\/), 

 (==>), 

 (<=>), 

 notL, 

 andL, 

 orL, 

 xorL, 

 xnorL, 

 nandL, 

 norL 

) 

where 

Here, MPL.Logic.Logic is the module’s name, indicating 

that the file is stored in the directory MPL/Logic and is 

named Logic.hs. This declaration is followed by 

definitions for each of the functions mentioned. 

For example, consider the definition of the function for logical 

implication: 

implies :: Bool -> Bool -> Bool 

implies a b 

 | (a == True)&&(b == False) = False 

 | otherwise = True 

In accordance with the objective of creating a notation close 

to the one actually used in discrete mathematics, an operator 

for logical implication is defined as follows: 

(==>) :: Bool -> Bool -> Bool 

a ==> b = implies a b 

This provides syntactic sugar and improves readability. Now, 

the function for logical implication may be called by the user 

in any of the following three ways, all giving the same result - 

False: 

implies True False 

True `implies` False 

True ==> False 

As mentioned in 3.1, this module also defines functions which 

work on a list of Boolean values. The difference between the 

names of these functions and those of unary or binary 

functions is that they contain an additional ‘L’ as suffix, 

indicating that they operate on lists. A common operation is to 

find the XOR (Exclusive OR) of a list of values. Since the 

module already contains a function for finding the XOR of 

two values, it can be used to XOR the result of XOR of two 

values with the next value. Repeating this process for the 

length of the list gives a single final Boolean value. Such 

functions for lists of Boolean values are implemented using 

Haskell’s foldl1 function. The xorL function is defined as: 

xorL :: [Bool] -> Bool 

xorL a = foldl1 (xor) a 

Here, a represents a list of Bool. An example of this 

function’s usage is: 

xorL [True, False, True, True, False] 

This returns the Bool value True. The results of invoked 

functions and sample usage of operators are shown in Figure 

12. 

4.2 Set Theory 
Under set theory, the library contains modules for working on 

Sets and Relations. 

4.2.1 Sets 
The module for Sets is declared as: 

module MPL.SetTheory.Set  
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( 

 Set(..), 

 set2list, 

 union, unionL, 

 intersection, 

intersectionL, 

 difference, 

 isMemberOf, 

 cardinality, 

 isNullSet, 

 isSubset, 

 isSuperset, 

 powerSet, 

 cartProduct, 

 disjoint, 

disjointL, 

 sMap 

) 

where 

The function union is defined as: 

union :: Ord a => Set a -> Set a -> Set a 

union (Set set1) (Set set2) 

 = Set $ (sort . nub) (set1 ++ [e | 

e <- set2, not (elem e set1)]) 

This is based on the definition that the union of two sets is the 

set containing all elements from that first set, and all elements 

from the second set that are not in the first. In addition, 

duplicates from this set are removed and this resultant set is 

sorted. If this function is called as union (Set 

{2,4,6}) (Set {1,2,3}), the output would be Set 

{1,2,3,4,6}. 

A common set operation is that of finding the Cartesian 

product of two sets. In the library module, it is defined as: 

cartProduct :: Ord a => Set a -> Set a -> 

[(a,a)] 

cartProduct (Set set1) (Set set2) 

= Set [(x,y) | x <- set1', y <- set2'] 

 where  

set1' = (sort . nub) set1 

 set2' = (sort . nub) set2 

This function may be called as cartProduct (Set 

{1,2}) (Set {3,4}) to produce the result Set 

{(1,3),(1,4),(2,3),(2,4)}. 

In several conditions, it is requires to check if two sets are 

disjoint. For this, the module contains the function 

disjoint, and it is defined as: 

disjoint :: Ord a => Set a -> Set a -> 

Bool 

disjoint (Set s1) (Set s2) = isNullSet $ 

intersection (Set s1) (Set s2) 

If a user were to invoke this function as disjoint (Set 

{1,3..10}) (Set {2,4..10}), then he/she would get 

back True as the output. These results are shown in Figure 

14. 

4.2.2 Relations 
The module for Relations is declared as: 

module MPL.SetTheory.Relation 

( 

 Relation(..), 

 relation2list, 

 getFirst, 

 getSecond, 

 elemSet, 

 returnFirstElems, 

 returnSecondElems, 

 isReflexive, 

 isIrreflexive, 

 isSymmetric, 

 isAsymmetric, 

 isAntiSymmetric, 

 isTransitive, 

 rUnion, 

 rUnionL, 

 rIntersection, 

 rIntersectionL, 

 rDifference, 

 rComposite, 

 rPower, 

 reflClosure, 

 symmClosure, 

 tranClosure, 

 isEquivalent, 

 isWeakPartialOrder, 

 isWeakTotalOrder, 

 isStrictPartialOrder, 

 isStrictTotalOrder 

) 

where 

Consider the definition for the isTransitive function: 

isTransitive :: Eq a => Relation a -> 

Bool 

isTransitive (Relation r) 

= andL [(a,c) `elem` r | a <- elemSet r, 

b <- elemSet r, c <- elemSet r, (a,b) 

`elem` r, (b,c) `elem` r] 

This function may be called by the user as isTransitive 

(Relation {(1,1),(1,2),(2,1)}), which would 

return False. However, the call isTransitive 

(Relation {(1,1),(1,2),(2,1),(2,2)}) would 

return True. This result is shown in Figure 16. 

The symmClosure function returns symmetric closure of 

the relation passed to it. It is defined as: 

symmClosure :: Ord a => Relation a -> 

Relation a 

symmClosure (Relation r) = rUnion 

(Relation r) (rPower (Relation r) (-1)) 

This function uses the property that symmetric closure of a 

relation is the union of that relation with its inverse. Calling 

the function as symmClosure (Relation 

{(1,1),(1,3)}) would give the result as Relation 

{(1,1),(1,3),(3,1)}. 

4.3 Graph Theory 
Under graph theory, the library contains modules for Graphs 

and Trees. 
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4.3.1 Graphs 
Declaration for the module on graphs is: 

module MPL.GraphTheory.Graph 

( 

 Vertices(..), 

 vertices2list, 

 Edges(..), 

 edges2list, 

 Graph(..), 

 GraphMatrix(..), 

 graph2matrix, 

 getVerticesG, 

 getVerticesGM, 

 numVerticesG, 

 numVerticesGM, 

 getEdgesG, 

 getEdgesGM, 

 numEdgesG, 

 numEdgesGM, 

 convertGM2G, 

 convertG2GM, 

 gTransposeG, 

 gTransposeGM, 

 isUndirectedG, 

 isUndirectedGM, 

 isDirectedG, 

 isDirectedGM, 

 unionG, 

 unionGM, 

 addVerticesG, 

 addVerticesGM, 

 verticesInEdges, 

 addEdgesG, 

 addEdgesGM, 

 areConnectedGM, 

 numPathsBetweenGM, 

 adjacentNodesG, 

 adjacentNodesGM, 

 inDegreeG, 

 inDegreeGM, 

 outDegreeG, 

 outDegreeGM, 

 degreeG, 

 degreeGM, 

 hasEulerCircuitG, 

 hasEulerCircuitGM, 

 hasEulerPathG, 

 hasEulerPathGM, 

 hasHamiltonianCircuitG, 

 hasHamiltonianCircuitGM, 

 countOddDegreeV, 

 countEvenDegreeV, 

 hasEulerPathNotCircuitG, 

 hasEulerPathNotCircuitGM, 

 isSubgraphG, 

 isSubgraphGM 

) 

where 

As stated in section 3.4, the module contains functions which 

work on graphs defined both formally and as matrices. 

Functions for the former have ‘G’ as suffix, while functions 

for the latter have ‘GM’ as suffix. The implementation of 

functions for both is made possible by the functions 

convertG2GM and convertGM2G, which convert between 

the formal and matrix representations. 

Consider the function for determining if a graph is undirected: 

isUndirectedGM :: Ord a => GraphMatrix a 

-> Bool 

isUndirectedGM (GraphMatrix gm) 

= (GraphMatrix gm) == gTransposeGM 

(GraphMatrix gm) 

When called as isUndirectedGM (GraphMatrix 

[[0,5],[5,0]]), True is returned. The invocation of 

functions for graphs is shown in Figure 17. 

Using the property of that a graph has an Euler circuit only if 

all vertices have even degree, the function 

hasEulerCircuitG is defined as: 

hasEulerCircuitG :: Ord a => Graph a -> 

Bool 

hasEulerCircuitG (Graph g) 

= and [ even $ (degreeG (Graph g) 

(Vertices [v])) | v <- vertices2list $ 

getVerticesG (Graph g)] 

Thus, an invocation such as hasEulerCircuitG 

(Graph (Vertices {1,2}, Edges 

{(1,2,4),(2,1,3)})) would result in a return of True. 

4.3.2 Trees 
The module for trees has the following declaration: 

module MPL.GraphTheory.Tree 

( 

 BinTree(..), 

 inorder, 

 preorder, 

 postorder, 

 singleton, 

 treeInsert, 

 treeSearch, 

 reflect, 

 height, 

 depth, 

 size, 

 isBalanced 

) 

where 

The functions inorder, preorder and postorder are 

functions for tree traversal. The definition for preorder is: 

preorder :: BinTree a -> [a] 

preorder Leaf = [] 

preorder (Node x t1 t2) = [x] ++ preorder 

t1 ++ preorder t2 

If we consider the following BinTree: 

tree = 

 Node 4 

    (Node 2 

       (Node 1 Leaf Leaf) 

       (Node 3 Leaf Leaf)) 

    (Node 7 

       (Node 5 

          Leaf 

          (Node 6 Leaf Leaf)) 

       (Node 8 Leaf Leaf)) 
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Then the function call, preorder tree, would generate 

the result [4,2,1,3,7,5,6,8]. 

In essence, the BinTree data type is a Binary Search Tree. 

The function treeSearch, is an implementation of the 

Binary Search algorithm and has the following definition: 

treeElem :: Ord a => a -> BinTree a -> 

Bool 

treeElem x Leaf = False  

treeElem x ( Node a left right ) 

 | x == a = True 

 | x < a = treeElem x left 

 | x > a = treeElem x right 

The function isBalanced recursively checks if the height 

of all nodes at the same level are equal. The definition of this 

function makes use of the height function and is as follows: 

isBalanced :: BinTree a -> Bool 

isBalanced Leaf = True 

isBalanced (Node x t1 t2) = isBalanced t1 

&& isBalanced t2 && (height t1 == height 

t2) 

If this function is applied on tree as isBalanced tree, 

the output would be False. The results of functions for 

Trees are shown in Figure 13. 

4.4 Number Theory 
Under number theory, the library contains the following 

modules: 

4.4.1 Base/Radix Manipulation 
This module has the description: 

module MPL.NumberTheory.Base 

( 

 toBase, 

 fromBase, 

 toAlphaDigits, 

 fromAlphaDigits 

) 

where 

The function toBase converts a decimal number into the 

equivalent form of a specified base/radix. It has the definition: 

toBase :: Int -> Int -> [Int] 

toBase base v = toBase' [] v where 

 toBase' a 0 = a 

 toBase' a v = toBase' (r:a) q where 

(q,r) = v `divMod` base 

When invoked as toBase 8 37 or as 37 `toBase` 8, 

the result would be [4,5], which is read as 45, octal for 37. 

The result of toBase is also shown in Figure 15. 

4.4.2 Fibonacci Series 
The module on Fibonacci series contains two functions, fib 

and fibSeries. The function fib takes an integer as 

parameter and returns the term at that index in the Fibonacci 

series. It is defined as: 

fib n = round $ phi ** fromIntegral n / 

sq5 

 where 

  sq5 = sqrt 5 :: Double 

  phi = (1 + sq5) / 2 

If called as fib 10, the output is 55. 

The fibSeries function takes an integer as parameter and 

returns the Fibonacci series as a list of integers. The definition 

is: 

fibSeries n = [fib i | i <- [1..n]] 

If a user wants to obtain the first 10 numbers in the Fibonacci 

series, he/she has to call the function as fibSeries 10, 

which gives the result [1,1,2,3,5,8,13,21,34,55]. 

4.4.3 Modular Arithmetic 
This module has the description: 

module MPL.NumberTheory.Modular 

( 

 modAdd, 

 modSub, 

 modMult, 

 modExp, 

 isCongruent, 

 findCongruentPair, 

 findCongruentPair1 

) 

where 

The modExp function is the function for modular 

exponentiation. It takes the numbers a, b and m as parameters 

and computes the value of ab mod m. The definition is: 

modExp a b m = modexp' 1 a b 

 where 

 modexp' p _ 0 = p 

 modexp' p x b = 

  if even b 

  then modexp' p (mod (x*x) m) 

(div b 2) 

  else modexp' (mod (p*x) m) x 

(pred b) 

If invoked as modExp 112 34 546, the integer 532 is 

returned. 

4.4.4 Prime Numbers 
This module has the following description: 

module MPL.NumberTheory.Primes 

( 

 primesTo, 

 primesBetween, 

 firstNPrimes, 

 isPrime, 

 nextPrime, 

 primeFactors 

) 

where 

The function primesTo generates all prime numbers less 

than or equal to the number passed as parameter, using the 

Sieve of Eratosthenes. Its definition is: 

primesTo :: Integer -> [Integer] 



International Journal of Computer Applications (0975 – 8887)  

Volume 70– No.15, May 2013 

14 

primesTo 0 = [] 

primesTo 1 = [] 

primesTo 2 = [2] 

primesTo m = 2 : sieve [3,5..m] 

The invocation primesTo 20 gives the output: 

[2,3,5,7,11,13,17,19]. 

4.5 Linear Algebra 
Under linear algebra, the library has modules for Vectors and 

Matrices. 

4.5.1 Vectors 
This module’s description is: 

module MPL.LinearAlgebra.Vector 

( 

 Vector(..), 

 vDim, 

 vMag, 

 vec2list, 

 vAdd, 

 vAddL, 

 (<+>), 

 vSub, 

 vSubL, 

 (<->), 

 innerProd, 

 (<.>), 

 vAngle, 

 scalarMult, 

 (<*>), 

 isNullVector, 

 crossProd, 

 (><), 

 scalarTripleProd, 

 vectorTripleProd, 

 extract, 

 extractRange, 

 areOrthogonal, 

 vMap, 

 vNorm 

) 

where 

The vAngle function returns the angle between two Vectors. 

It has the definition: 

vAngle :: Floating a => Vector a -> 

Vector a -> a 

vAngle (Vector []) (Vector []) = 0 

vAngle (Vector v1) (Vector v2) = acos ( 

(innerProd (Vector v1) (Vector v2)) / ( 

(vMag (Vector v1)) * (vMag (Vector v2))) 

As shown in Figure 18, when invoked as vAngle (Vector 

[1,1,1]) (Vector [2.5,2.5]), the result is 

0.6154797086703874. 

The function scalarTripleProduct is based on the 

functions innerProduct and crossProduct. It is 

defined as: 

scalarTripleProd a b c = innerProd a 

(crossProd b c) 

To normalize a Vector, the vNorm function can be used. It 

has the definition: 

vNorm (Vector v) = scalarMult (1/(vMag 

(Vector v))) (Vector v) 

If called as vNorm (Vector [1,2,3]), the output is the 

Vector: 
<0.2672612419124244,0.5345224838248488,0.

8017837257372732> 

4.5.2 Matrices 
The module for matrices has the following description: 

module MPL.LinearAlgebra.Matrix 

( 

 Matrix(..), 

 mAdd, 

 mAddL, 

 (|+|), 

 mSub, 

 (|-|), 

 mTranspose, 

 mScalarMult, 

 (|*|), 

 mMult, 

 mMultL, 

 (|><|), 

 numRows, 

 numCols, 

 mat2list, 

 determinant, 

 inverse, 

 mDiv, 

 (|/|), 

 extractRow, 

 extractCol, 

 extractRowRange, 

 extractColRange, 

 mPower, 

 trace, 

 isInvertible, 

 isSymmetric, 

 isSkewSymmetric, 

 isRow, 

 isColumn, 

 isSquare, 

 isOrthogonal, 

 isInvolutory, 

 isZeroOne, 

 isZero, 

 isOne, 

 isUnit, 

 zero, 

zero’, 

one, 

one’, 

unit, 

 mMap 

) 

where 

The mMult function performs multiplication of two matrices 

and returns the resultant matrix. Its definition is: 

mMult :: Num a => Matrix a -> Matrix a -> 

Matrix a 
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mMult (Matrix m1) (Matrix m2) = Matrix $ 

[ map (multRow r) m2t | r <- m1 ] 

 where  

 (Matrix m2t) = mTranspose (Matrix 

m2) 

 multRow r1 r2 = sum $ zipWith (*) 

r1 r2 

To add syntactic sugar, the module exports the operator |><| 

for multiplying two matrices. Thus, if a user wishes to 

multiply a Matrix m1, which is Matrix [[1,0],[0,1]] 

and a Matrix m2, which is Matrix [[4.5,8],[(-

10),6]], he/she can call either mMult m1 m2 or m1 

|><| m2, to get the output as Matrix 

[[4.5,8.0],[(-10.0),6.0]]. The usage and result is 

shown in Figure 19. 

Another common operation is to find inverse of a matrix. In 

this module, the function inverse is defined using the 

functions cofactorM and determinant as: 

inverse (Matrix m) = Matrix $ map (map (* 

recip det)) $ mat2list $ cofactorM 

(Matrix m) 

 where 

  det = determinant (Matrix m) 

If called as inverse (Matrix [[1,1],[1,(-1)]]), 

the result is the matrix: Matrix [[0.5,0.5],[0.5,(-

0.5)]]. 

The module contains several functions to check for properties 

of a matrix. One of these is isOrthogonal, which is to 

check if a matrix is orthogonal. Using the functions 

mTranspose and inverse it is easily defined as: 

isOrthogonal (Matrix m) = (mTranspose 

(Matrix m) == inverse (Matrix m)) 

When it is used as isOrthogonal (Matrix 

[[1,1],[1.2,(-1.5)]]), the output is False. 

4.6 Combinatorics 
This module has the description: 

module MPL.Combinatorics.Combinatorics 

( 

 factorial, 

 c, 

 p, 

 permutation, 

 shuffle, 

 combination 

) 

where 

The function definition for factorial is: 

factorial :: Integer -> Integer 

factorial n 

 | (n == 0) = 1 

 | (n > 0) = product [1..n] 

 | (n < 0) = error "Usage - 

factorial n, where 'n' is non-negative." 

This function can return arbitrarily large integers since its 

return type is Integer. When factorial 5 is called, 

120 is returned as the result. 

The factorial function acts as a base for other functions 

in the module. For example, the function p returns the number 

of possible permutations of r objects from a set of n given by 

nPr. It is defined as: 

p :: Integer -> Integer -> Integer 

p n r = div (factorial a) (factorial (a-

b)) 

 where 

  a = max n r 

  b = min n r 

When this function is called as p 10 5 or 10 `p` 5, 

30240 is the output. Usage of these functions is shown in 

Figure 20. 

4.7 Applications 
This subsection contains sample results from applications 

developed using the DSL. 

4.7.1 Ciphers 
Fig. 4 and Fig. 5 show the output of a program developed in 

the DSL for enciphering and deciphering of messages using 

Caesar cipher and Transposition cipher. 

4.7.2 RSA Encryption and Decryption 
Sample execution results of a program for implementing RSA 

encryption system using the DSL are shown in Fig. 6 and Fig. 

7. This program was developed using the library modules on 

modular arithmetic, MPL.NumberTheory.Modular, and 

on prime numbers, MPL.NumberTheory.Primes. 

 

 

Figure 4: Enciphering using Caesar cipher 
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4.7.3 Diffie-Hellman Key Exchange 
A sample output of a program developed using the DSL for 

Diffie-Hellman Key Exchange protocol is shown in Fig. 8. 

The two users must have a common primitive root and a 

prime number. The shared key and public keys are calculated 

using the users’ private keys. 

4.7.4 Simultaneous Linear Equations 
Since the DSL’s library provides support for Matrices, it is 

easy to develop a program for solving simultaneous linear 

equations. Fig. 9 shows an output for solving the two 

equations in two variables: x + 2y = 4 and x + y = 1. It is also 

possible to solve linear equations in n variables using n or 

more equations. 

4.7.5 Mersenne Prime Numbers 
The DSL’s module on prime numbers under number theory 

allows for efficient determination of Mersenne prime 

numbers. Mersenne prime numbers are prime numbers of the 

form 2q - 1, where q is also a prime number. Fig. 10 shows the 

output as a list of powers q, between 2 and 1000, which result 

in Mersenne primes. Fig. 11 shows the output as a list all 

Mersenne prime numbers less than 2100. 

 

Figure 5: Deciphering using Transposition cipher 

 

Figure 6: Encryption using RSA 

 

Figure 7: Decryption using RSA 

 

 

Figure 8: Generating Shared Key using Diffie-Hellman 

Key Exchange protocol 

 

Figure 9: Solving simultaneous linear equations 
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5. SCREENSHOTS OF IMPLEMENTED 

LIBRARY MODULES

 

 

Figure 10: Powers of Mersenne prime numbers 

 

Figure 11: Mersenne prime numbers having powers from 2 to 100 

 

 

 

Figure 12: Module on Mathematical Logic in GHCi 

 

Figure 13: Module on Trees in GHCi 

 

 

Figure 14: Module on Sets in GHCi 
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Figure 15: Module on Base Manipulation in GHCi 

 

Figure 16: Module on Relations in GHCi 

 

Figure 17: Module on Graphs in GHCi 

 

Figure 18: Module on Vectors in GHCi 

 

Figure 19: Module on Matrices in GHCi 

 

Figure 20: Module on Combinatorics in GHCi 
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6. FUTURE SCOPE 
Since discrete mathematics is a vast area of study, it is not 

possible to include all topics in the library during the initial 

stages of development. In the future, modules for group 

theory, information theory, geometry, topology and 

theoretical computer science can be added. Additionally, the 

preprocessor can be constantly updated to handle new 

modules and new features in existing ones. Apart from this, 

based on feedback and suggestions from users, the syntax of 

this DSL can be improved to suit their needs. 

7. CONCLUSION 
Discrete mathematics plays a central role in the fields of 

modern cryptography, social networking, digital signal and 

image processing, computational physics, analysis of 

algorithms, languages and grammars. The language 

developed, owing to its syntax, helps computer scientists and 

mathematicians to work in an easier and more efficient 

manner as compared to that while using a General Purpose 

Language (GPL). This language would also be helpful to 

those learning and teaching discrete mathematics. 

8. REFERENCES 
[1] Fowler, M. 2010, “Domain-Specific Languages”, 

Addison-Wesley Professional. 

[2] Taha, W. 2008, “Domain Specific Languages”, IEEE 

International Conference on Computer Engineering and 

Systems (ICESS).  

[3] Mernik, M., Heering, J., and Sloane, A. M. 2005, “When 

and How to Develop Domain-Specific Languages”, 

ACM Computing Surveys (CSUR). 

[4] Ghosh, D. 2011, “DSLs in Action”, Manning 

Publications Co.  

[5] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., 

Schindler, M., and Volkel, S. 2009, “Design Guidelines 

for Domain Specific Languages”, Proceedings of DSM 

2009. 

[6] Hughes, J., "Why Functional Programming Matters", 

The Computer Journal, 1989. 

[7] Goldberg, B., “Functional Programming Languages”, 

ACM Computing Surveys, Vol. 28, No. 1, March 1996.  

[8] Hudak, P. 1996. "Building domain-specific embedded 

languages", ACM Computing Surveys, December 1996. 

[9] http://www.haskell.org/haskellwiki/Introduction. 

Introduction to Haskell, retrieved on October 22, 2012. 

[10] http://www.haskell.org/ghc/docs/7.0.4/html/users_guide/i

ndex.html. The Glorious Glasgow Haskell Compilation 

System User’s Guide, Version 7.0.4

 


