
Dimpl: An Efficient and Expressive DSL for Discrete
Mathematics

Rohit Jha
Department of Computer Science and Engineering

University of California, San Diego

Abstract

This paper describes the language Dimpl, a domain-specific language (DSL) for
discrete mathematics. Based on Haskell, Dimpl carries all the advantages of a
purely functional programming language. Besides containing a comprehensive
library of types and efficient functions covering the areas of logic, set theory,
combinatorics, graph theory, number theory and algebra, the DSL also has a
notation akin to one used in these fields of study. This paper also demonstrates
the benefits of Dimpl by comparing it with C, Fortran, MATLAB and Python
—languages that are commonly used in mathematical programming.

Keywords: Discrete mathematics, Programming languages
2010 MSC: 97N70, 68R01, 97P40, 68N15

1. Introduction

Discrete mathematics and several of its fields such as logic and number the-
ory have been studied by humans since ancient times. Modern mathematicians
rely on programming languages and expect them to be capable of representing
problems and efficiently determining solutions. While programming languages
such as C, Fortran, Python and MATLAB are often used by many mathemati-
cians, they may not be the best choice due to the following reasons:

• Cost of learning: Mathematicians may not be adept programmers and
hence learning new or multiple programming languages could require a
fair amount of time and effort.

• Expressiveness: The formal representations of discrete structures such
as Graphs are not available in existing programming languages. Mathe-
maticians may have to create their own complex data types, which could
be unintuitive when using pointers in C.

Email address: rohitjha@ucsd.edu (Rohit Jha)

Preprint submitted to Elsevier November 16, 2015

• Performance: The areas of number theory and combinatorics contain
many compute-intensive functions and operations. A language such as
Python may be convenient for writing programs, but it lags behind many
programming languages in terms of performance.

Dimpl (Discrete Mathematics Programming Language) is a domain-specific
language (DSL) for discrete mathematics that aims to address these drawbacks
through the following ways:

• Dimpl provides a syntax that is identical to the formal notation followed
in discrete mathematics, thus being easier to read and grasp [1].

• Dimpl provides infinite-precision integer arithmetic, giving mathemati-
cians the ability to work with signed and unsigned integers that are larger
than 64 bits, which is essential in number theory and algebra.

• Dimpl programs are more efficient than many interpreted languages as
they are compiled into the target’s machine code.

The remaining sections of this paper are organized as follows: section 2
describes the design of Dimpl, section 3 describes a comparative analysis of
Dimpl with other languages and section 4 concludes the paper with the future
scope of Dimpl.

2. The Dimpl Language

Dimpl is implemented in Haskell, a purely-functional programming lan-
guage. The following features of Haskell make it an excellent base language:

• No side-effects: Haskell is a purely functional language and treats com-
putation as the evaluation of mathematical functions, avoiding state and
mutable data [2]. This makes Haskell a good candidate for a base language
of a mathematics-oriented DSL.

• Functions are first-class objects: Functions in Haskell can be passed
to other functions as arguments, can be returned as results from other
functions and can also be assigned to variables. This property allows
users to work with higher order functions, making programs modular and
easier to understand [3].

• Lazy evaluation: Lazy evaluation is a part of the operational semantics
of Haskell. Haskell evaluations are deferred until their results are required
by other computations, allowing programmers to handle infinite data. For
example, the Haskell expression let a = [0 ..] creates an infinite list
of integers beginning at 0. This property is useful while working with
infinite sets such as the set of natural numbers N = {0, 1, 2 . . .} [4].

2

• Type system: Provision of creating algebraic data types makes it con-
venient to create a DSL in Haskell. Haskell’s strong compile-time type
checking ensures program reliability [5] and its excellent type inference
system helps improve productivity as programmers can use complex types
ubiquitously without the type signature.

• Polymorphic types and functions: The parametric polymorphism fea-
ture in Haskell allows a function to be used with multiple types [6]. For
example, a function with type signature as id :: a -> a implies that
the id function can have an argument of Char, Bool, Int or any other
type and return a value of the same type. Haskell also supports ad-hoc
polymorphism [7], in which a function or operator can perform different
operations for different types. For example, the + operator can add two
Int, Double or a user-defined type.

• Compiled programming language: The Glasgow Haskell Compiler
(GHC) provides a cross-platform environment for Haskell programming
with support for numerous libraries and optimizations [8][9][10]. Since
GHC compiles Haskell code to native code, the run-time efficiency is much
higher than those of interpreted languages such as Python.

• Smart garbage collection: Since data is immutable in Haskell, every
operation’s result needs to be stored in a new value. However, GHC takes
advantage of the immutability and clears the older value, hence improving
garbage collection when there is a higher percentage of garbage. Besides
this, GHC’s garbage collector has been tuned to perform efficiently on
multi-core machines [11].

2.1. Architecture Design Pattern
To keep the syntax of the language close to the actual formal mathematical

representation, Dimpl is implemented as a preprocessed DSL. Dimpl consists
of:

1. Library: A library of functions and types written in Haskell provides
functionality for users to write Dimpl programs easily. The library con-
sists of 12 modules, which are explained in section 2.2.

2. Preprocessor: The preprocessor transforms Dimpl code into its equiv-
alent Haskell code. It is a simple script that uses the sed (stream editor)
utility to parse a Dimpl program and translate it to Haskell.

Figure 1 shows the architecture design pattern of Dimpl. The Dimpl script
written by a user is first passed to the preprocessor, which translates the Dimpl
code into Haskell. GHC then compiles this Haskell code into the native binary
(machine code) by linking the Dimpl and other Haskell libraries. The pre-
processing can be performed by passing the -F -pgmF options to GHC during
compilation.

3

Figure 1: Dimpl architecture design pattern

2.2. Modules
Broadly, Dimpl’s library covers the areas of mathematical logic, set theory,

linear algebra, combinatorics, number theory and graph theory [12]. The library
is divided into 12 modules as shown in Figure 2. The following subsections
describe each of the modules in detail.

Figure 2: Modules of the Dimpl library

2.2.1. Logic
The Logic module supports first-order logic, which includes logical operators,

functions, quantifiers, Boolean algebra and predicate logic.
Dimpl provides syntactic sugar for Haskell operators such as && (AND –

logical conjunction) and || (OR – logical disjunction) through functions such

4

as and’ and or’. While Haskell has functions named and and or, they require
a list of Bool values to be passed as parameter. On the other hand, Dimpl’s
and’ and or’ take just two Bool arguments. Additionally, they can be used in
their infix form, which is a more intuitive representation.

Since Haskell allows programmers to easily create new binary operators,
Dimpl is equipped with operators for conjunction and disjunction. The /\ and
\/ operators can be used instead of and’ and or’, bringing Dimpl’s syntax
closer to the actual mathematical notation. Dimpl borrows the logical negation
function not (¬ or ∼), the universal quantifier forall (∀) and the existential
quantifier exists (∃) from Haskell.

Apart from these, Dimpl also adds several other functions and operators for
logic. The functions in this module are described in Table 1 and the operators
are described in Table 2.

Table 1: Functions in the Logic module

Function Description Example
and’ Conjunction and’ True False
or’ Disjunction or’ True False
nand Negation of conjunction nand True False
nor Negation of disjunction nor True False
xor Exclusive disjunction xor True False
xnor Negation of XOR xnor True False
notL Negation of a list of Bool notL [True, False, True]
andL Conjunction of a list on Bool andL [True, False, True]
orL Disjunction of a list of Bool orL [True, False, True]
nandL NAND on a list of Bool nandL [True, False, True]
norL NOR on a list of Bool norL [True, False, True]
xnorL XNOR on a list of Bool xnorL [True, False, True]
equals Equality equals True False
implies Implication implies True False

Table 2: Operators in the Logic module

Operator Description Example
/\ Binary conjunction True /\ False
\/ Binary disjunction True \/ False
==> Negation of conjunction True ==> False
<=> Equality True <=> False

Table 3 compares the notation (syntax) of Haskell, Dimpl and mathematical
logic. As one can observe, Dimpl would be relatively easier to use for a novice
student or mathematician.

5

Table 3: Comparison of Haskell, Dimpl and mathematical logic notations

Haskell Dimpl First-order logic
True && False && True True /\ False /\ True T ∧ F ∧ T
True || False || True True \/ False \/ True T ∨ F ∨ F

2.2.2. Set
The Set module of Dimpl allows users to perform operations on sets of values

(numbers, characters, strings, lists, etc.). This module introduces the Set type,
which internally stores the elements in a list and displays the output with the
curly braces surrounding the elements. For example, the Dimpl expression

Set {x | x <- natural, x > 10}

returns a Set of natural numbers greater than 10 – {11, 12, 13, ...}. This
expression is quite close to the mathematical representation, {x | x ∈ N, x >
10}, and is facilitated by exploiting Haskell’s list comprehension.

Table 4 lists all the functions and their brief descriptions. Dimpl func-
tions are usually called using prefix notation and can be called in infix notation
by using the 8 8 (backtick) infix operator. For example, to check if the set
vowels = Set {‘a’,‘e’,‘i’,‘o’,‘u’} is a subset of the set alphabet = Set
{‘a’..‘z’}, we can call the isSubset function as either isSubset vowels
alphabet or as vowels 8isSubset8 alphabet. The result returned by both
expressions is True.

2.2.3. Relation
Using the Relation type users can perform operations with binary relations,

which are associations between the elements of the domain and the elements of
the range. As with Sets, Relations can be easily understood and represented
in Dimpl since they can be created using Haskell’s list comprehension. For
example, if N denotes the set of all natural numbers, then the relation ≤⊆ N×N,
which is expressed as {(x, y)|x ∈ N, y ∈ N, x ≤ y}, can be written in Dimpl as
the following expression:

Relation {(x,y) | x <- natural, y <- natural, x <= y}

which evaluates to {(1,1),(1,2),(1,3),...}. All the functions provided by
the Relation module are described in Table 5.

2.2.4. Vector
The Vector module introduces the Vector type which is used for representing

vectors of any order. An example of a third-order vector in DiMPL is Vector
<1,2,0> and an example of an infinite-order vector is Vector <1,2,3..>. This
notation of using angle brackets to enclose vector components distinguishes
Vectors from lists and Sets, thereby increasing programs’ readability as it is
the ordered set notation for vectors in mathematics. For instance, the vector
v = 〈1, 2, 0〉 is written in Dimpl as Vector <1,2,0>.

6

Table 4: Functions in the Set module

Function Description
setToList Returns a Set as a list
listToSet Returns a list as a Set
union Returns the union of two Sets
unionL Returns the union of a list of Sets
intersection Returns the intersection of two Sets
intersectionL Returns the intersection of a list of Sets
difference Returns the set difference of two Sets
cardinality Returns the number of elements in a Set
powerSet Returns the power set of a Set
cartProduct Returns the Cartesian product of two Sets
nullSet Returns a null Set
natural Returns the Set of natural numbers {1, 2, 3 . . . }
natural’ Returns a Set of natural numbers up to an upper limit
whole Returns the Set of whole numbers {0, 1, 2 . . . }
whole’ Returns a Set of whole numbers up to an upper limit
isMemberOf Checks if a value is an element of a Set
isNotMemberOf Checks if a value is not an element of a Set
isNullSet Checks if a Set is a null set
isNotNullSet Checks if a Set is not a null set
isSubset Checks if a Set is a subset of another Set
isProperSubset Checks if a Set is a proper subset of another Set
isSuperset Checks if a Set is a superset of another Set
areDisjoint Checks if two Sets are disjoint
areDisjointL Checks if all Sets in a list are disjoint
sMap Maps a function to all the elements of a Set

Table 6 describes the functions provided by this module. In addition, the
Vector module provides syntactic sugar for some of the functions through oper-
ators, which are described in Table 7.

To find the volume of a parallelepiped whose three edges are formed by the
vectors u = 〈3, 2, 1〉, v = 〈−1, 3, 0〉 and w = 〈2, 2, 5〉, the Dimpl program is:

import Vector
let u = Vector <3,2,1>
let v = Vector <(-1),3,0>
let w = Vector <2,2,5>
let volume = stp u v w

Another interesting application of the Vector type is that it can represent
vector functions as well. For example, f x = Vector <sin x,cos x,tan x>
defines a vector function f over one variable, x.

7

Table 5: Functions in the Relation module

Function Description
relationToList Returns a Relation as a list
listToRelation Returns a list as a Relation
inverse Returns the inverse of a Relation
getDomain Returns the domain of a Relation
getRange Returns the range of a Relation
elements Returns the elements of a Relation
returnDomainElems Returns the elements of a Relation’s domain
returnRangeElems Returns the elements of a Relation’s range
rUnion Returns the union of two Relations
rUnionL Returns the union of Relations in a list
rIntersection Returns the intersection of two Relations
rIntersectionL Returns the intersection of Relations in a list
rDifference Returns the difference of two Relations
rComposite Returns the concatenation of two Relations
rPower Returns the nth power of a Relation
reflClosure Returns the reflexive closure of a Relation
symmClosure Returns the symmetric closure of a Relation
tranClosure Returns the transitive closure of a Relation
isReflexive Checks if a Relation is reflexive
isIrreflexive Checks if a Relation is irreflexive
isSymmetric Checks if a Relation is symmetric
isAsymmetric Checks if a Relation is asymmetric
isAntiSymmetric Checks if a Relation is anti-symmetric
isTransitive Checks if a Relation is transitive
isEquivalent Checks if a Relation is equivalent
isWeakPartialOrder Checks if a Relation is a weak partial order
isWeakTotalOrder Checks if a Relation is a weak total order
isStrictPartialOrder Checks if a Relation is a strict partial order
isStrictTotalOrder Checks if a Relation is a strict total order

2.2.5. Matrix
The Matrix type introduced in this module allows users to work with ma-

trices. The Matrix type internally stores values as a two-dimensional list. For
example, consider the third-order unit/identity matrix – Matrix [[1,0,0],
[0,1,0], [0,0,1]] – which is displayed as:

1 0 0
0 1 0
0 0 1

This allows users to easily comprehend results of matrix operations. Dimpl’s
Matrix module contains numerous functions for handling matrices and these are

8

Table 6: Functions in the Vector module

Function Description
dimension Returns the dimension/order of a Vector
magnitude Returns the magnitude of a Vector
vectorToList Returns a Vector as a list
listToVector Returns a list as a Vector
vAdd Returns the sum of two Vectors
vAddL Returns the sum of Vectors in a list
vSub Returns the difference of two Vectors
vSubL Returns the difference of Vectors in a list
innerProd Returns the inner product of two Vectors
angle Returns the angle/direction of a Vector
scalarMult Returns the product of a scalar and a Vector
crossProduct Returns the cross product of two Vectors
stp Returns the scalar triple product of three Vectors
vtp Returns the vector triple product of three Vectors
extract Returns the component at a particular index
extractRange Returns the components at a range of indices
vMap Maps a function to all components of a Vector
normalize Returns the normalized form of a Vector
isNullVector Checks if a Vector is a null vector
areOrthogonal Checks if two Vectors are orthogonal

Table 7: Operators in the Vector module

Operator Description Example
<+> Add two Vectors Vector <1,2> <+> Vector <0,1>
<-> Subtract two Vectors Vector <1,0> <-> Vector <(-2)>
<.> Dot product Vector <4,6> <.> Vector <1,5.5>
<*> Scalar multiplication 3 <*> Vector <2.5,0,(-1.7)>
>< Cross product Vector <1,1> >< Vector <2,3>

listed in Table 8. This module also provides five Matrix operators for common
matrix operations – addition, subtraction, division and multiplication (with a
scalar or Matrix). These are described in Table 9 with examples. In all the
examples, m1 and m2 have type Matrix.

Provision of a number of functions allows users to easily write programs.
For example, using the inverse function and the matrix multiplication opera-
tor |><|, a function to solve linear equations of any order can be written as:

import Matrix
solveEqns :: Num a => Matrix a -> Matrix a -> Matrix a
solveEqns (Matrix coeff) (Matrix const)
= inverse (Matrix coeff) |><| Matrix const

9

Table 8: Functions in the Matrix module

Function Description
mAdd Returns the sum of two Matrix
mAddL Returns the sum of a list of Matrix
mSub Returns the difference of two Matrix
mSubL Returns the difference of a list of Matrix
transpose Returns the transpose of a Matrix
mScalarMult Returns the product of a scalar and a Matrix
mMult Returns the product of two Matrix
mMultL Returns the product of a list of Matrix
numRows Returns the number of rows in a Matrix
numCols Returns the number of columns in a Matrix
matrixToList Returns a Matrix as a two-dimensional list
listToMatrix Returns a two-dimensional list as a Matrix
determinant Returns the determinant of a Matrix
inverse Returns the inverse of a Matrix
mDiv Returns the result of dividing two Matrix
extractRow Returns a particular row of a Matrix
extractCol Returns a particular column of a Matrix
extractRowRange Returns a list of rows of a Matrix
extractColRange Returns a list of columns of a Matrix
mPower Returns a Matrix raised to the nth power
trace Returns the trace of a Matrix
isInvertible Checks if a Matrix is invertible
isSymmetric Checks if a Matrix is symmetric
isSkewSymmetric Checks if a Matrix is skew-symmetric
isRow Checks if a Matrix is a row matrix
isColumn Checks if a Matrix is a column matrix
isSquare Checks if a Matrix is a square matrix
isOrthogonal Checks if a Matrix is orthogonal
isInvolutive Checks if a Matrix is involutive
isZeroOne Checks if a Matrix is a zero one matrix
isZero Checks if a Matrix is a zero matrix
isOne Checks if a Matrix is a one matrix
isUnit Checks if a Matrix is a unit/identity matrix
mMap Maps a function to a Matrix
zero Returns a square zero matrix of the order mentioned
zero’ Returns a M ×N zero matrix
one Returns a square one matrix of the order mentioned
one’ Returns a M ×N one matrix
unit Returns a unit/identity matrix of the order mentioned

10

Consider a system of two simultaneous linear equations:

2x− 3y = −2
4x+ y = 24

This system of equations can be represented using matrices as:[
2 −3
4 1

] [
x
y

]
=

[
−2
24

]
The solveEqns function can be called as follows to solve this system of equa-

tions:

m1 = Matrix [[2,(-3)], [4,1]]
m2 = Matrix [[(-2)],[24]]
result = solveEqns m1 m2

The result matrix then has the value Matrix [[5],[4]], which indicates
that the solution of the two equations is x = 5 and y = 4.

Table 9: Operators in the Matrix module

Operator Description Example
|+| Add two Matrix m1 |+| m2
|-| Subtract two Matrix m1 |-| m2
|/| Divide two Matrix m1 |/| m2
|*| Multiply a scalar and a Matrix 42 |*| m1
|><| Multiply two Matrix m1 |><| m2

2.2.6. Combinatorics
The Combinatorics module in Dimpl provides functions to calculate facto-

rial, determine the number of permutations and combinations, find all possible
permutations and combinations, and shuffle a list of values. The functions for
these are listed in Table 10

Table 10: Functions in the Combinatorics module

Function Description
factorial Returns the factorial of an Integer
p Returns the number of possible permutations of a list
c Returns the number of possible combinations of a list
permutation Returns a list of all permuations
combination Returns a list of all combinatons
shuffle Returns a list after shuffling all its elements

11

Since finding the number of possible permutations and combinations may
involve calculating the factorial of large numbers, the factorial function sup-
ports infinite-precision integers. Furthermore, the functions p and c have been
optimized; instead of naively implementing the functions as

p = factorial n 8div8 factorial (n - r)
c = factorial n 8div8(factorial r * factorial (n - r))

the functions have been implemented as

p :: Integer -> Integer -> Integer
p n r
| n < 1 = error "Usage - p n r, where ’n’ is positive."
| r < 1 = error "Usage - p n r, where ’r’ is positive."
| otherwise = product [(a-b+1) .. a]
where
a = max n r
b = min n r

c :: Integer -> Integer -> Integer
c n r
| n < 1 = error "Usage - c n r, where ’n’ is positive."
| r < 1 = error "Usage - c n r, where ’r’ is positive."
| otherwise = product [(b+1) .. n] 8div8 product [1 .. (a-b)]
where
a = max n r
b = min n r

2.2.7. Base
The Base module provides functions that allow users to convert numbers

between various number bases. These are described in Table 11.

Table 11: Functions in the Base module

Function Description
toBase Returns the equivalent of a decimal number in another base
toBin Returns a decimal number in its binary equivalent
toOct Returns a decimal number in its octal equivalent
toHex Returns a decimal number in its hexadecimal equivalent
fromBase Returns the decimal equivalent of a number in any base
fromBin Returns the decimal equivalent of a binary number
fromOct Returns the decimal equivalent of an octal number
fromHex Returns the decimal equivalent of a hexadecimal number
toAlpha Returns a number in its equivalent alphanumeric form
fromAlpha Returns a number from its equivalent alphanumeric form

12

A notable feature of the functions converting decimal integers to other bases
is that the result is returned as a list of digits. For example, toBin 32 returns
[1,0,0,0,0,0]. This allows us to handle bases such as the sexagecimal (base
60), in which a single digit may actually be equivalent to two-digits in decimal.
Thus, the sexagesimal equivalent of 10,000 is returned by the expression toBase
60 10000, which evaluates to [2,46,40].

2.2.8. Modular
Modular arithmetic is widely used in cryptography [13][14] and computer

algebra. The Modular module allows users to perform basic modular arithmetic
operations and solve congruence relations using the functions described in Table
12.

Table 12: Functions in the Modular module

Function Description
modAdd Returns sum using modular arithmetic
modSub Returns difference using modular arithmetic
modMult Returns product using modular arithmetic
modExp Returns result after modular exponentiation
isCongruent Checks for modular congruency a ≡ b (mod n)
findCoungruentPair Returns x from ax ≡ b (mod n)
findCoungruentPair’ Returns x from a+ x ≡ b (mod n)

The modExp function can be used to demonstrate a trivial working program
of the Diffie-Hellman key exchange protocol. According to the protocol [15], if
α is a primitive root and q is a prime number, both of which are known to both
Alice and Bob (the two communicating parties), then Alice’s and Bob’s public
keys are given by

YA = αXAmod q

YB = αXBmod q

where XA and XB are their respective private keys. Alice can calculate the
shared key KA as

KA = (YB)
XAmod q

= αXBXAmod q

Bob can calculate the shared key KB as

KB = (YA)
XBmod q

= αXAXBmod q

= αXBXAmod q
= KA

13

Using Dimpl’s Modular library module, the program can be written as:

import Modular

publicKey :: Integer -> Integer -> Integer -> Integer
publicKey a b c = modExp a b c

sharedKey :: Integer -> Integer -> Integer -> Integer
sharedKey pubKey priKey prime = modExp pubKey priKey prime

q = 23 -- prime number
alpha = 5 -- primitive root
xA = 6 -- Alice’s private key
xB = 15 -- Bob’s private key

yA = publicKey alpha xA q -- (5 ∧ 6) mod 23 = 8
yB = publicKey alpha xB q -- (5 ∧ 15) mod 23 = 19
kA = sharedKey yB xA q -- (19 ∧ 6) mod 23 = 2
kB = sharedKey yA xB q -- (8 ∧ 15) mod 23 = 2

2.2.9. Primes
The Primes module in Dimpl’s library provides functions for efficient gener-

ation of prime numbers, primality testing and prime factorization. These allow
users in the field of cryptography to develop efficient programs for encryption
and also for cryptanalysis [13][14]. All the functions of this module are described
in Table 13.

Table 13: Functions in the Primes module

Function Description
primesTo Returns all primes less than a specified limit
primesBetween Returns all primes between two numbers
nPrimes Returns the first n primes
isPrime Checks if an Integer is a prime number
nextPrime Returns a prime ≥ to an Integer
primeFactors Returns all the prime factors of an Integer
uniquePrimeFactors Returns all the unique prime factors of an Integer
areCoprime Checks if two Integers are coprime

Since the Primes module has efficient implementations of primesTo and
isPrime, these functions can be applied in the calculation of Mersenne prime
numbers. A Mersenne prime number Mp is a prime number of the form 2p − 1,
where p is also a prime number. A simple program in Dimpl to generate the
set of all values of p is

14

import Set
import Primes

mersennePrimePowersTo n
= Set { p | p <- primesTo n, isPrime (2∧p - 1) }

When invoked as mersennePrimePowersTo 2000, the result returned is Set
{2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279}.

2.2.10. Fibonacci
The Fibonacci sequence is a sequence of number where a term is the sum of

the last two terms, 0 and 1 being the first two terms. This module can be applied
in the Fibonacci search algorithm, Fibonacci heap data structure and Fibonacci
cube graphs for interconnecting parallel and distributed systems [16][17]. The
functions of this module are described in Table 14.

Table 14: Functions in the Fibonacci module

Function Description
fib Returns the nth term in the Fibonacci sequence
fibSeq Returns the first n terms in the Fibonacci sequence
fibIndex Returns the index of a term in the Fibonacci sequence
isFibNum Checks if an Integer is a term of the Fibonacci sequence

The fib, fibSeq and fibIndex functions take an Integer as argument and
return an Integer, thus handling numbers larger than 263 − 1.

2.2.11. Tree
The BinTree data type in the Tree module represents a binary tree and is

defined internally as:

data BinTree a =
Leaf | Node a (BinTree a) (BinTree a) deriving (Eq, Show)

A BinTree can consist of either a Leaf (leaf node) or a Node with a value
and two BinTree children. For example, the following statement defines tree
as a BinTree holding values from 1 through 8:

let tree =
Node 4
(Node 2
(Node 1 Leaf Leaf) (Node 3 Leaf Leaf))

(Node 7
(Node 5 Leaf (Node 6 Leaf Leaf))
(Node 8 Leaf Leaf))

15

Table 15: Functions in the Tree module

Function Description
inorder Returns nodes of a BinTree in inorder sequence
preorder Returns nodes of a BinTree in preorder sequence
postorder Returns nodes of a BinTree in postorder sequence
singleton Returns a singleton Node
addNode Returns a BinTree after adding a Node to a BinTree
hasValue Checks if a BinTree has a Node of a specified value
reflect Returns the mirror-reflection of a BinTree
height Returns the height of a BinTree
depth Returns the depth of a Node
size Returns the number of Nodes in a BinTree
isBalanced Checks if a BinTree is a balanced binary Tree

This is the Dimpl representation of the binary tree shown in Figure 3. Ta-
ble 15 describes the functions provided by the Tree module to work with the
BinTree data type.

Figure 3: A binary tree with nodes numbered 1 through 8. The square nodes represent leaf
nodes of this binary tree.

2.2.12. Graph
In discrete mathematics, graphs are denoted by G(V,E), where V is the set

of vertices and E is the set of edges [18]. Graphs in Dimpl have a represen-
tation exactly like their mathematical notation; the Graph type combines the
Vertices and Edges types to represent graphs. The Vertices type is a Set
of all vertices in a Graph and the Edges type is a Set of tuples containing the
starting vertex, ending vertex and the weight of the edge connecting these ver-
tices. Thus, if we have a set of vertices v = Vertices {1,2,3}, a set of edges

16

Figure 4: A directed graph with three vertices

e = Edges {(1,2,1),(1,1,2),(3,1,3)}, then a Graph can be defined as let
g = Graph (v,e). When printed, this Graph is displayed as:

Graph ({1,2,3}, {(1,2,1),(1,1,2),(3,1,3)})

This graph can be visualized as the one shown in Figure 4. Since graphs can
also be represented as matrices (adjacency matrices with the matrix elements
holding edge weights) to easily solve certain problems, the Graph module pro-
vides the GraphMatrix type. A GraphMatrix is simply a two-dimensional list
and is defined as newtype GraphMatrix a = GraphMatrix [[a]] deriving
(Eq). The Graph g defined above can be represented as a GraphMatrix as:
GraphMatrix [[0,1,0], [2,0,0], [3,0,0]] and is displayed like a Matrix:

1 0 0
0 2 0
3 0 0

Table 16: Functions in the Graph module

Function Description
verticesToList Returns Vertices as a list
listToVertices Returns a list as Vertices
edgesToList Returns Edges as a list
listToEdges Returns a list as Edges
graphToMatrix Returns a Graph as a Matrix
matrixToGraph Returns a Matrix as a Graph
getVerticesG Returns all Vertices of a Graph
getVerticesGM Returns all Vertices of a GraphMatrix
numVerticesG Returns the number of Vertices in a Graph
numVerticesGM Returns the number of Vertices in a

GraphMatrix

17

getEdgesG Returns all Edges in a Graph
getEdgesGM Returns all Edges in a GraphMatrix
numEdgesG Returns the number of Edges in a Graph
numEdgesGM Returns the number of Edges in a

GraphMatrix
convertGM2G Returns a GraphMatrix as a Graph
convertG2GM Returns a Graph as a GraphMatrix
transposeG Returns the transpose of a Graph
transposeGM Returns the transpose of a GraphMatrix
isDirectedG Checks if a Graph is directed
isDirectedGM Checks if a GraphMatrix is directed
isUndirectedG Checks if a Graph is undirected
isUndirectedGM Checks if a GraphMatrix is undirected
unionG Returns the union of two Graph
unionGM Returns the union of two GraphMatrix
addVerticesG Adds Vertices to a Graph
addVerticesGM Adds Vertices to a GraphMatrix
getVerticesFromEdges Returns Vertices in Edges
addEdgesG Adds Edges to a Graph
addEdgesGM Adds Edges to a GraphMatrix
areConnectedGM Checks if Vertices are connected in a

GraphMatrix
numPathsBetweenGM Returns the number of paths between two

Vertices
adjacentNodesG Returns adjacent nodes of a Graph’s vertex
adjacentNodesGM Returns adjacent nodes of a GraphMatrix’s

vertex
inDegreeG Returns the in-degree of a Graph’s vertex
inDegreeGM Returns the in-degree of a GraphMatrix’s

vertex
outDegreeG Returns the out-degree of a Graph’s vertex
outDegreeGM Returns the out-degree of a GraphMatrix’s

vertex
degreeG Returns the degree of a Graph’s vertex
degreeGM Returns the degree of a GraphMatrix’s ver-

tex
countOddDegreeV Returns the number of vertices with odd de-

gree
countEvenDegreeV Returns the number of vertices with even

degree
isSubgraphG Checks if a Graph is a subgraph of another
isSubgraphGM Checks if a GraphMatrix is a subgraph of

another

18

hasEulerCircuitG Checks if a Graph has a Euler Circuit
hasEulerCircuitGM Checks if a GraphMatrix has a Euler Circuit
hasEulerPathG Checks if a Graph has a Euler Path
hasEulerPathGM Checks if a GraphMatrix has a Euler Path
hasEulerPathNotCircuitG Checks if a Graph has a Euler Path not Cir-

cuit
hasEulerPathNotCircuitGM Checks if a GraphMatrix has a Euler Path

not Circuit
hasHamiltonianCircuitG Checks if a Graph has a Hamiltonian Circuit
hasHamiltonianCircuitGM Checks if a GraphMatrix has a Hamiltonian

Circuit

Table 16 describes all the functions provided by the Graph module. Most
of the functions are applied to graphs in either the Graph or the GraphMatrix
types; the functions with a suffix ‘G’ are applied to the Graph type and the
functions with suffix ‘GM’ are applied to the GraphMatrix type.

3. Comparative Analysis

The primary objective of creating a DSL is to provide a clear and efficient
representation of problems and solutions. This section compares Dimpl with
C, Fortran, MATLAB and Python as these four languages are often used in
mathematical programming.

3.1. Programming Paradigm
Programming paradigms dictate how programmers construct solutions to

problems. For example, with a functional programming language, programs
are constructed using functions, whereas with object-oriented programming,
programs are built up using classes and methods. Other common paradigms
include imperative, procedural, logic, generic and reflective paradigms. Table
17 shows a comparison of various programming paradigms supported by the five
languages under consideration.

Table 17: Comparison of programming paradigms supported

Language Functional Object-oriented Procedural Generic Reflective
Dimpl X X X
C X
Fortran X X X
MATLAB X X
Python X X X

For representing solutions in discrete mathematics, a programming language
should ideally treat functions as first-class objects. This also allows users to
work with higher-order functions and promotes modularity. As we can see in

19

Table 17, the languages offering this are Dimpl and Python. Furthermore,
mathematical functions and values must not be mutable. As Dimpl is a purely
functional programming language, it does not allow for side-effects [2], giving
it an advantage over Python. Since Dimpl inherits parametric polymorphism
from Haskell [6], a function can be applied to multiple types of parameters with-
out multiple definitions (generic programming), making programs concise and
easier to comprehend. On the other hand, Python does not support the generic
programming paradigm and programmers are responsible for writing programs
to handle multiple types. Thus, from a programming paradigms perspective,
Dimpl is the best language for discrete mathematics.

3.2. Type Safety and Type Checking
In a type-safe language, it is guaranteed that the value of an expression will

be a proper member of the expression’s type. The C programming language
is type-unsafe since it allows copying data to a type even when the data may
not be of that type [19]. For example, it is possible to copy data between two
pointers of different types, violating type and memory safety.

Type-checking refers to the method by which the types of expressions in a
program are checked. This checking can be done during compile-time (static) or
during run-time (dynamic). Since static type checking is done on a program’s
code, it can usually handle bugs earlier. Also, in type-safe languages static type
checking can improve the efficiency of binary generated by skipping dynamic
safety checks [20]. In a language handling types such as Sets, Relations, Vectors,
Matrices, Graphs, Edges and Vertices, it becomes essential to check for the type
at compile-time as internally all these types may be represented by arrays or
lists.

Table 18: Type safety, type checking and infinite-precision support

Language Type safe Static type checking Infinite-precision
Dimpl X X X
C X
Fortran X X
MATLAB X
Python X X X

Table 18 compares the type safety and type checking that is performed on the
five languages under consideration. A type-safe and statically-typed language
would be beneficial due to the reasons mentioned above, which means Dimpl,
Fortran and Python are good candidates for a language involving operations on
discrete structures.

3.3. Infinite-Precision Arithmetic
With infinite-precision arithmetic, digits of precision do not depend on the

register size of a processor, but only on the available memory. For instance, on
a 64-bit computer the largest signed integer that can be stored in a register is

20

264 − 1 = 18, 446, 744, 073, 709, 551, 615. While this may seem sufficiently large,
several application areas of discrete mathematics such as cryptography require
handling of larger numbers.

Table 18 also compares the five languages to show which of them support
infinite-precision integer arithmetic without any additional packages. Dimpl’s
Integer type and Python’s int, provide functionality to work with integers
larger than 64 bits.

3.4. Run-time Efficiency
An important factor for selecting a programming language is the efficiency

of programs written in that language. While efficiency can be measured on the
basis of memory footprint or the number of lines of code (LOC), this paper
compares only the run-time efficiency of Dimpl with C, Fortran, MATLAB and
Python through five compute-intensive operations.

All programs were executed on a machine having the following configuration:

• CPU: Intel Core i7-5500U (2.40 GHz)

• L1 cache: 128 KB

• L2 cache: 512 KB

• L3 cache: 4.00 MB

• Memory: 8 GB DDR3 (1600 MHz)

• Operating System: Ubuntu 15.10 (x86_64) with Linux kernel 4.2.0

• Haskell Compiler: Glasgow Haskell Compiler (GHC) 7.8.4

• C Compiler: GCC 5.2.1

• Fortran Compiler: GNU Fortran 5.0

• MATLAB version: 2012b

• Python version: 3.4.3

The programs were compiled with the optimization flags enabled for the
respective compilers – -O2 flag for GHC and -O3 flag for both GCC and GNU
Fortran. The run-times of the programs were calculated by using the perf stat
-r 100 <program> command, which executes ‘program’ 100 times and returns
the mean running time.

21

Table 19: Running time of fibonacci(n) in milliseconds

Language n = 1 n = 20 n = 40 n = 60 n = 80 n = 100

Dimpl 1.107 1.160 1.181 1.208 1.248 1.281
C* 0.744 0.754 0.783 0.797 0.813 –
C 0.754 0.979 427.082 212678.42 >107 –
Fortran* 1.250 1.313 1.411 1.449 1.502 –
Fortran 1.135 1.463 458.636 531654.15 >107 –
MATLAB 0.211 353.280 612572.81 >107 >107 –
Python* 28.912 29.034 29.055 29.129 29.178 29.342
Python 28.392 34.403 55190.385 >107 >107 >107

3.4.1. Generating Fibonacci Terms
The Fibonacci sequence is defined by the recurrence relation Fn = Fn−1 +

Fn−2 , with F0 = 0 and F1 = 1. Table 19 compares the running time of the
fibonacci(n) function which generates the nth Fibonacci term. Note that the
running time for languages marked with a ‘*’ represent the running time of the
iterative implementation of the function.

From the table, we can infer that Dimpl is only behind C in terms of run-
time efficiency of the fibonacci(n) implementation, which is not surprising
given the maturity of GCC. However, since Dimpl supports infinite-precision
arithmetic, it can generate larger terms. Another interesting observation from
Table 19 is that recursive implementations of the fibonacci(n) function in C,
Fortan and Python have a significantly longer running time, even exceeding
1,000 seconds for generating the 80th Fibonacci term.

3.4.2. Calculating Factorial
The factorial of a positive integer n, denoted by n!, is defined as the product

of all positive integers less than or equal to n, with 0! = 1. The factorial
operation is heavily applied in combinatorics, algebra and mathematical analysis
and is hence chosen as a benchmark to compare the run-time efficiency of the five
languages. Table 20 compares the running time of the factorial(n) function,
which returns the factorial of the integer n.

Table 20: Running time of factorial(n) in milliseconds

Language n = 1 n = 20 n = 50 n = 100 n = 150 n = 200

Dimpl 1.107 1.160 1.181 1.208 1.248 1.281
C* 0.744 0.754 0.783 0.797 0.813 –
C 0.754 0.979 427.082 212678.42 >107 –
Fortran* 1.250 1.313 1.411 1.449 1.502 –
Fortran 1.135 1.463 458.636 531654.15 >107 –
MATLAB 0.211 353.280 612572.81 >107 >107 –
Python* 28.912 29.034 29.055 29.129 29.178 29.342
Python 28.392 34.403 55190.385 >107 >107 >107

The table indicates that MATLAB’s built-in factorial function has the

22

least running time, but with the inability to calculate factorials when n >
171. Thus, DiMPL’s factorial function compensates for its relatively slower
run-time (behind MATLAB and C) with its ability to calculate factorials of
larger numbers.

3.4.3. Generating Prime Numbers
The third test for measuring run-time efficiency is to generate all prime

numbers up to n through the function primes(n). Table 21 depicts the running
time of primes(n) across the five languages. The function was implemented
using the Sieve of Eratosthenes prime sieve algorithm in C, Fortran and Python.

Table 21: Running time of primes(n) in milliseconds

Language n = 103 n = 104 n = 105 n = 106 n = 107

Dimpl 1.793 4.193 7.318 16.083 113.87
C 0.971 1.903 3.875 30.728 363.03
Fortran 1.863 3.416 8.428 40.32 416.41
MATLAB 3.109 3.653 3.981 15.609 99.206
Python 35.289 36.697 78.281 398.64 3985.2

For n ≤ 104 , primes(n) is most efficient in C, followed by Fortran. For
n ≥ 107 , MATLAB’s built-in function primes proves to be the most efficient,
followed by DiMPL’s primesTo function from the Primes module. Another
interesting observation is that the running time increases drastically in all lan-
guages when n > 105.

3.4.4. Factorizing Integers
Prime factorization of integers is one of the most computationally difficult

problems and this property is widely applied in cryptography. For example, fac-
toring a 232-digit number (RSA-768) took two years while hundreds of comput-
ers were used [21]. In Table 22, the running time of the primeFactors function
from Dimpl’s Primes module is compared with MATLAB’s factorize and a
trial-division based implementation in C, Fortran and Python for all integers
up to n. In this benchmark, all numbers less than or equal to the input were
factorized.

Table 22: Running time of factorize(n) in milliseconds

Language n = 10 n = 102 n = 103 n = 104 n = 105 n = 106

Dimpl 1.184 1.611 2.487 11.947 160.56 1524.8
C 0.820 0.848 1.583 9.794 115.99 1216.3
Fortran 1.251 1.899 3.428 13.084 179.28 1929.4
MATLAB 3.532 3.939 37.210 425.83 381.38 3626.5
Python 30.369 30.517 36.900 151.74 2425.9 31522

As one can observe, the language with the most efficient prime factorization
is C, followed by Dimpl.

23

3.4.5. Solving Simultaneous Linear Equations
Using matrix multiplication and matrix inversion, it is possible to solve si-

multaneous linear equations in n variables. If we represent all the coefficients
in a n × n coefficient matrix A, all the constants in a constant column matrix
B of order n and if X represents the variable column matrix of order n, then
the equations can be represented by A.X = B. Thus, X = B.A−1, implying
that the variables can be calculated by multiplying the constant matrix and the
inverse of the coefficient matrix. The Dimpl program for this is shown as an
example in Section 2.2.5 and it is compared with equivalent implementations in
C, Fortran, MATLAB and Python.

Table 23: Running time of solve(n) in milliseconds

Language n = 10 n = 20 n = 40 n = 60 n = 80 n = 100

Dimpl 2.129 3.814 15.652 47.890 326.24 681.66
C 1.319 3.961 16.711 50.319 370.99 745.10
Fortran 2.065 4.227 18.516 53.743 425.88 791.61
MATLAB 1.140 2.933 15.006 46.150 313.72 688.23
Python 39.583 60.860 92.887 259.21 1050.6 12651

Table 23 shows the comparison of running time of the programs implement-
ing the solve(n) function, where n is the number of simultaneous linear equa-
tions. For n < 100, Dimpl loses out only to MATLAB in terms of run-time
efficiency but has the least running time for n = 100.

4. Conclusions and Future Scope

This paper introduces Dimpl, a preprocessed domain-specific language for
discrete mathematics based on Haskell, and covers its various modules. Dimpl
offers a syntax that is close to the mathematical notations, making it an ideal
choice not only for users working in the application fields such as cryptography
and image processing, but also for teaching introductory discrete mathematics
to students. This paper also compares the features and performance of Dimpl
with C, Fortran, MATLAB and Python to demonstrate how Dimpl stands
favorably against them, besides having high expressiveness and a better run-
time efficiency in many cases.

Future versions of Dimpl will have an extended library comprising of mod-
ules for lattices, groups, rings, monoids and other discrete structures. They
will also contain additional functions for the existing modules such as Graph
and Tree. Moreover, incorporating Haskell’s support for pure parallelism and
explicit concurrency in the library functions could significantly improve the ef-
ficiency of some functions on multi-core machines.

24

References

[1] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop Domain-Specific Languages. ACM Computing Surveys (CSUR),
37(4):316–334, 2005.

[2] Benjamin Goldberg. Functional programming languages. ACM Computing
Surveys (CSUR), 28(1):249–251, 1996.

[3] John Hughes. Why Functional Programming Matters. The Computer Jour-
nal, 32(2):98–107, 1989.

[4] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A
History of Haskell: being lazy with class. In Proceedings of The Third
ACM SIGPLAN History of Programming Languages Conference (HOPL-
III), pages 1–55, 2007.

[5] Seidl Helmut. Haskell overloading is DEXPTIME-complete. Information
Processing Letters, 52(2):57–60, 1994.

[6] Brian O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell.
O’Reilly Media, Inc., 2008.

[7] Alejandro Serrano Mena. Beginning Haskell: A Project-Based Approach.
Apress, 2014.

[8] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Jones Cordy, Hall
Kevin, Will Partain, and Phil Wadler. The Glasgow Haskell Compiler: a
technical overview. In Proceedings of the UK Joint Framework for Infor-
mation Technology (JFIT) Technical Conference, volume 93, 1992.

[9] Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell
Compiler inliner. Journal of Functional Programming, 12(4):393–434, 2002.

[10] Simon L. Peyton Jones and Andre L. M. Santos. A transformation-based
optimiser for Haskell. Science of Computer Programming, 32(1–3):3–47,
1998.

[11] Simon Marlow and Simon Peytnon Jones. Multicore garbage collection with
local heaps. In Proceedings of the International Symposium on Memory
Management, pages 21–32, 2011.

[12] Rohit Jha, Alfy Samuel, Ashmee Pawar, and M. Kiruthika. A Domain-
Specific Language for Discrete Mathematics. International Journal of Com-
puter Applications, 70(15):6–19, 2013.

[13] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM (CACM), 21(2):120–126, 1978.

25

[14] John Kelsey, Bruce Schneier, and David Wagner. Mod n Cryptanalysis,
with Applications against RC5P and M6. Lecture Notes in Computer Sci-
ence, 1636(1999):139–155, 2001.

[15] Whitfield Diffie and Martin R. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[16] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM
(JACM), 34(3):596–615, 1987.

[17] Wen-Jing Hsu. Fibonacci cubes: a new interconnection Topology. IEEE
Transactions on Parallel and Distributed Systems, 4(1):3–12, 1993.

[18] Bernard Kolman, Robert C. Busby, and Sharon Cutler Ross. Discrete
Mathematical Structures - Sixth Edition. Pearson, 2008.

[19] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language
- Second Edition. Prentice-Hall, 1988.

[20] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[21] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Em-
manuel ThomÃľ, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Pe-
ter L. Montgomery, Dag A. Osvik, Herman T. Riele, Andrey Timofeev, and
Paul Zimmermann. Factorization of a 768-bit RSA modulus. In Proceed-
ings of the 30th Annual Conference on Advances in Cryptology (CRYPTO
10), pages 333–350, 2010.

26

