
Proceedings of the NCNTE-2012, Third Biennial National Conference on Nascent Technologies

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.
Department of Computer Engineering & Information Technology

32

Secure Login Through Mobile Authentication

Kalpesh Adhatrao, Aditya Gaykar, Rohit Jha, Vipul Honrao

Department of Computer Engineering

Fr. C.R.I.T, Vashi, Navi Mumbai, India

E-mail: {kalpesh.adhatrao, adityagaykar, rohit305jha, mithunhonrao2000}@gmail.com

Abstract—Logging in from an unreliable terminal on

public networks using common approaches such as by

way of keyboard, mouse or on-screen keyboard, is

always a security issue as third party keylogger software

and hardware devices are able to record key strokes

and track mouse movements covertly. On the other

hand, communication over a personal mobile device

such as a cell phone, smartphone or table PC, is

relatively safe for authentication. In this paper, we

demonstrate the usage of QR (Quick Response) codes

with encrypted access tokens for authenticating a user’s

login on a mobile device, and then allowing him/her to

access the web application on the terminal computer.

Keywords—login authentication; QR code; keylogger;

access token; mobile device;

I. INTRODUCTION

In today‟s age, the boundary between the virtual and

real life is the login process to online web

applications. Needless to say, a secure login is of

paramount importance. Through our implementation,

we have demonstrated the usage of QR (Quick

Response) codes, containing encrypted access tokens,

to be scanned on mobile devices such as smartphones

and tablet PCs. A similar experiment (named

„Sesame‟) was carried out by Google [1]. The details

of the experiment are not known, although a member

of the experiment, Dirk Balfanz, did mention some on

Google+. In our implementation, the content of the

QR code will be an authentication hyperlink which the

user will use in his/her mobile browser. From this

page in the mobile browser, the user will submit his

login details. On successful authorization, the access

token is validated for that particular user account.

Then, the user is notified on his mobile device to

refresh the URL (Uniform Resource Locator) of the

page containing the QR code on his desktop browser.

If the access token was validated successfully on the

web server, then the user is directed to his web

account. By default, the lifetime of an access token is

10 minutes. Once the token is validated, its lifetime

changes to 2 minutes. Within this time, the URL must

be refreshed. The generated token is destroyed from

the database either after the user is redirected to his

home page on refresh or when the lifetime expires.

The purpose of this procedure is to allow the user a

diversion from key stroke logging on alien terminals,

so as to protect his/her login details. This login

method is more secure than not only the usage of

keyboards on terminal computers, but also biometric

authentication [2].

The traditional method of login using a keyboard is

flawed as a user‟s account can be accessed by a person

using a keylogger (hardware device or software

program) to store and retrieve the login details.

Another problem difficult to overcome is that of

shoulder-surfing, in which a malicious observer looks

for passwords, PINs (Personal Identification

Numbers) or other sensitive personal information,

while the user is entering them [3]. Biometric

authentication, which identifies individuals based on

physiological and behavioral characteristics, suffer

from the disadvantage that they are non-revocable and

non-secret and pose a physical threat to the user [4].

II. TECHNOLOGIES APPLIED

A. CAPTCHA

Standing for “Completely Automated Public Turing

test to tell Computers and Humans Apart”,

CAPTCHA is a means of automatically generating

challenges which intend to provide a problem easy

enough for all humans to solve and also to prevent

standard automated software from filling out a form

[5]. In our implementation, CAPTCHA is an added

layer of security, making sure that only a human can

ask for mobile authentication.

B. SHA-1

Access tokens are 10-character long pseudo-random

alphanumeric keys generated through a PHP (PHP:

Hypertext Preprocessor) script. This string is then

encrypted using SHA-1 (Secure Hash Algorithm - 1),

which is available as a built-in function in PHP and

generates a 160-bit hexadecimal string [6].

C. QR Code

Due to its fast readability and large storage capacity

compared to traditional UPC (Universal Product

Codes) barcodes [7], the QR code has become popular

for a variety of applications including storing URLs.

Also, apps for scanning QR codes are available on

almost all smartphones and tablet PCs [8]. We have

used the Google API (Application Programming

Interface) to generate QR codes of access tokens.

D. Access Token

An access token is an object encapsulating the security

descriptor of a process. The security descriptor

identifies an owner (or process) and access rights

available to that owner (or process). The access token,

encryption, is passed to the browser in the form of a

QR code. The token is visible in the address bar with

the URL. The entire URL is also displayed under the

QR code. Thus if a user is unable to scan the QR code,

he/she can use the URL on his/her mobile device.

Proceedings of the NCNTE-2012, Third Biennial National Conference on Nascent Technologies

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.
Department of Computer Engineering & Information Technology

33

III. IMPLEMENATION

We have implemented our mobile authentication for

the website http://www.compag.in. On the home

page, a link “Try mobile auth” directs the user to a

page where he/she is asked to fill out a CAPTCHA

form. For this purpose, we have used reCAPTCHA by

Google [9], which has provision for an audio

translation for people with visual disabilities.

Additionally, an option to reload CAPTCHAs is

available to users. On successful verification, the user

is directed to a page containing the access token as

part of the URL. The same link is available as a QR

code and in the form of text under the QR code. The

addition of CAPTCHA prevents attacks by malicious

bots.

The access token exists on the server database for a

maximum time of 10 minutes. A user must login from

his mobile device within this time to be able to access

the website from the desktop. If a user fails to

authenticate within this time, then he/she must ask for

another access token by following the above

procedure again. The lifetime of the access token is

long enough to allow a user multiple tries, in case his

mobile device‟s browser fails. On opening the link

encoded in the QR code on the mobile browser, the

user can use the mobile login page of the website.

Once properly logged in, a message is displayed on

the mobile browser, asking the user to refresh his

desktop browser window that still shows the page

with QR code. Then, the user‟s home page on the web

site is displayed on the desktop browser. As a result,

the validated access token is destroyed, even if the

lifetime hasn‟t expired, thus preventing access by a

malicious attacker from another device.

In case the user does not have a mobile device

equipped with a barcode scanning app, he/she can

type the link displayed under the QR code into the

mobile browser and authenticate himself/herself to the

server. After this, the user can refresh his/her desktop

browser to access his/her home page.

A. Generation of Access Tokens

When a CAPTCHA test is passed by the user, an

access token is generated by a PHP script. In this

script, a pseudo-random, 10-character long string is

generated from alphanumeric characters – 0, 1, 2, 3, 4,

5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r,

s, t, u, v, w, x, y, z, A, B, C, D, E, F, G, H, I, J, K, L,

M, N, O, P, Q, R, S, T, U, V, W, X, Y and Z. For

example, a sample random string is “a95iN1q7Xt”.

Then, to this random string, the SHA-1 cryptographic

hash function is applied. The result is a 160-bit

hexadecimal string, i.e. a 40-character long string. For

the above sample string, the result is

“7d39da64cad740cd6c416a30d9b811329127abc0”.

This is the actual unique access token generated. This

access token is reasonably secure considering its size

and the pseudo-randomness of generation of the

string. Combined with the SHA-1 hash function and

the limited lifetime of the token, it would be difficult

to determine the value of a valid access token.

Figure 1: Sequence diagram of user‟s interaction

B. QR Code Generation

Google has added the QR code generator API to its

extensive API of chart generators [10]. An

infographics server returns the QR code in the form of

an image in response to a URL GET or POST request.

All the data required to create the QR code is included

in the URL. However, as the QR code in our

implementation does not contain a large amount of

data, we prefer to use the GET request method [11].

The root URL of the Google Chart API is

https://chart.googleapis.com/chart?. All infographic

URLs start with this root URL and followed by one or

more of the following parameter-value pairs:

 chs – Size of the image in pixels, in the format

<width>x<height>. A 350x350 image will be

specified as chs=350x350.

 cht – Type of image. Assigning cht=qr denotes

a QR code image type to be returned.

 chl – This parameter holds as value the data to

be encoded, which is URL encoded with

hexadecimal notion. For example, is the data is

„Hello World‟, then the parameter-value pair is

chl=Hello%20World.

 choe – This optional parameter contains the

encoding method to use for the data. The

possible methods are Shift_JIS, UTF-8 and ISO-

8859-1.

 chld – Another optional parameter, it sets the

error correction level for the QR code. The

various levels are L (default), M, Q and H,

which offer 7%, 15%, 25% and 30% of the QR

code to be restored respectively. Given the

simplicity of the content in our implementation,

we use level L.

For generating the QR code of the access token, we

use the following URL that returns an image:

https://chart.googleapis.com/chart?cht=qr&chs=30

0x300&chl=http://www.compag.in/login/mlogin/7d

39da64cad740cd6c416a30d9b811329127abc0&cho

e=UTF-8&chld=L

http://www.compag.in/
https://chart.googleapis.com/chart
https://chart.googleapis.com/chart?cht=qr&chs=300x300&chl=http://www.compag.in/login/mlogin/7d39da64cad740cd6c416a30d9b811329127abc0&choe=UTF-8&chld=L
https://chart.googleapis.com/chart?cht=qr&chs=300x300&chl=http://www.compag.in/login/mlogin/7d39da64cad740cd6c416a30d9b811329127abc0&choe=UTF-8&chld=L
https://chart.googleapis.com/chart?cht=qr&chs=300x300&chl=http://www.compag.in/login/mlogin/7d39da64cad740cd6c416a30d9b811329127abc0&choe=UTF-8&chld=L
https://chart.googleapis.com/chart?cht=qr&chs=300x300&chl=http://www.compag.in/login/mlogin/7d39da64cad740cd6c416a30d9b811329127abc0&choe=UTF-8&chld=L

Proceedings of the NCNTE-2012, Third Biennial National Conference on Nascent Technologies

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.
Department of Computer Engineering & Information Technology

34

Figure 2: Scanning QR code generated on webpage.

Figure 3: Submitting login details.

C. Database Manipulation

The website‟s database has a table for storing data

pertaining to mobile authentication. In this table,

attributes for human verification and a hash key exist.

Initially, when a user verifies that he/she is a human, a

tuple is added to the table. The first attribute for

human verification is the hash key, the process of

whose generation is already explained. On logging in

from the mobile browser, the validity of the link

containing the access token, together with the

username, is checked. If the tuple containing the

access token exists, the attribute for human

verification is set and the user is asked to refresh the

URL on his terminal browser within 2 minutes. The

user should log in from a mobile browser within this

time. If he/she doesn‟t do so, the lifetime expires and

the entire procedure would have to be followed again.

Once, the page is refreshed, the tuple containing the

generated access token which was validated, is

removed from the table.

IV. FUTURE SCOPE

The current implementation could be developed as a

web service so that several other web applications

would be able to support mobile authentication.

Another possibility is the integration with existing

mobile apps, such that, if a user is already logged in to

that web app, it is not required to resubmit login

details on receiving an access token. It may also not

be necessary to ask the user to refresh his page, as it

Figure 4: Successful logging in.

could be done so automatically once the authorization

is completed on the web server.

V. CONCLUSION

Today‟s standard methods for logging into websites

are subject to a variety of attacks. We have presented

and implemented an alternative and secure approach

for entering user login details by using mobile

devices such as cell phones, smartphones and tablet

PCs as alternative input devices.

ACKNOWLEDGMENT

We thank George Jose, Amiraj Dhawan and Ajinkya

Pisal for vital contributions to this implementation.

REFERENCES

[1] Sesame – Google Accounts,

https://accounts.google.com/sesame (January 22, 2012)

[2] Jain, A., Hong, L., & Pankanti, S. (2000). "Biometric
Identification". Communications of the ACM, 43(2), p. 91-

98. DOI 10.1145/328236.328110.

[3] Kumar, M., Garfinkel, T., Boneh, D., & Winograd, T. (2007).
“Reducing Shoulder-surfing by Using Gaze-based Password

Entry”.
http://hci.stanford.edu/research/GUIDe/publications/SOUPS

%202007%20-%20Reducing%20Shoulder-

surfing%20by%20Using%20Gaze-
based%20Password%20Entry.pdf (January 21, 2012)

[4] Weaver, A.C. (2006). "Biometric Authentication". Computer,

39 (2), p. 96-97. DOI 10.1109/MC.2006.47.
[5] Grossman, Lev (2008-06-05). "Computer Literacy Tests: Are

You Human?". Time (magazine). (December 6, 2008)

[6] PHP: sha-1 Manual,
http://php.net/manual/en/function.sha1.php (January 21,

2012)

[7] "QR Code – About 2D Code". Denso-
Wave. http://www.denso-wave.com/qrcode/aboutqr-e.html

(October 3, 2011)

[8] "Global Growth in Mobile Barcode Usage - Q4 / 2010".
3GVision. 5 January 2011. (January 21, 2012)

[9] reCAPTCHA: Stop Spam, Read Books,

http://www.google.com/recaptcha (January 21, 2012)
[10] Google QR Chart API, http://www.qrme.co.uk/qr-code-

news/3-newsflash/75-google-qr-code-chart-api.html (January

21, 2012)
[11] Infographics – Google Code

http://code.google.com/apis/chart/infographics/ (January 21,

2012)

http://www.time.com/time/magazine/article/0,9171,1812084,00.html
http://www.time.com/time/magazine/article/0,9171,1812084,00.html
http://en.wikipedia.org/wiki/Time_(magazine)
http://www.denso-wave.com/qrcode/aboutqr-e.html
http://www.denso-wave.com/qrcode/aboutqr-e.html

