
A Project Report on

“MATHEMATICAL PROGRAMMING

LANGUAGE”

Submitted in partial fulfillment of the requirement for

Degree in Bachelor of Engineering (Computer Engineering)

By

Ms. Alfy Samuel

Mr. Rohit Jha

Ms. Ashmee Pawar

Guided by

Prof. M. Kiruthika

Department of Computer Engineering

Fr. Conceicao Rodrigues Institute of Technology

Sector 9A, Vashi, Navi Mumbai – 400703

University of Mumbai

2012-2013

CERTIFICATE

This is to certify that the project entitled

MATHEMATICAL PROGRAMMING LANGUAGE

Submitted By

Ms. Alfy Samuel 100916

Mr. Rohit Jha 100923

Ms. Ashmee Pawar 100940

In partial fulfillment of degree of B.E.(Semester VIII) in Computer Engineering for term

work of the project is approved.

External Examiner Internal Examiner

_________________ ________________

External Guide Internal Guide

_________________ _________________

Head of the Department Principal

__________________ _________________

Date: - College Seal

ACKNOWLEDGEMENT

This project has been a combined effort of not only the members of the group, but also

teachers, friends and their families.

We thank our Principal, Dr. Rollin Fernandes for giving us the opportunity and permission to

undertake the project. We would like to thank the Head of Department, Computer

Engineering, Prof. Harish Kumar Kaura, for allowing us to take up the study of this topic. We

are extremely grateful to our project guide, Prof. M. Kiruthika, for guiding us throughout the

project and giving us her valuable feedback and support. We would also like to express

sincere gratitude to our project coordinators, Prof. Smita Dange and Prof. Sandhya Pati.

ABSTRACT

Our proposed programming language is a Preprocessed Domain Specific Language (DSL)

that enables implementation of concepts of discrete mathematics. The language has data

structures and flow control structures that are expected in a programming language of this

domain. The language covers the areas of Mathematical Logic, Set Theory, Functions, Graph

Theory, Combinatorics, Linear Algebra and Number Theory.

A library of data types and functions provides functionality which is frequently required by

mathematicians and computer scientists. The preprocessor implemented is a syntactical

preprocessor, translating the DSL program into equivalent base language representation. This

program is then compiled into binary format, i.e. machine code, and can be executed by

users.

The advantage of our DSL is that users are provided with a notation close to the actual

representation used for concepts of discrete mathematics. As a result, this language is better

suited for usage than a library for a General Programming Language (GPL).

TABLE OF CONTENTS

Sr. No. Topic Page No.
1 Introduction

1.1. Elements of a Programming Language

1.2. Standard Library

1.3. Implementation

1.4. Quality Requirements

1.5. Domain-Specific Languages

1.5.1. Usage Patterns

1.5.2. Design Goals

1.5.3. Advantages

1.5.4. Disadvantages

1

1

1

1

2

2

2

2

3

3

2 Literature Survey

2.1. Domain-Specific Languages

2.1.1. Definition

2.1.2. Characteristics of DSLs

2.1.3. Need for DSLs

2.1.4. Classification of DSLs

2.1.5. DSLs vs. GPLs

2.2. Guidelines for Implementing DSLs

2.2.1. Language Purpose

2.2.2. Language Realization

2.2.3. Language Content

2.2.4. Concrete Syntax

2.2.5. Abstract Syntax

2.3. Developing DSLs

 2.3.1. Decision

 2.3.2. Analysis

 2.3.3. Design

 2.3.4. Implementation

 2.3.5. Deployment

 2.3.6. DSL Design and Implementation Support

4

4

4

4

4

5

5

6

6

6

7

8

9

9

9

10

11

12

15

15

3 Problem Statement 16

4 Project Scope 17

5 System Design

 5.1. Functional Programming Languages

 5.1.1. Functional Programming Paradigm

 5.1.2. Benefits of Functional Programming

 5.2. Haskell

 5.2.1. Advantages of Haskell

18

18

18

18

19

20

 5.3. Implementation Strategies

 5.3.1. Embedded DSL

 5.3.2. Preprocessed DSL

 5.3.3. Interpreted DSL

 5.4. Selected Design

22

22

23

24

26

6 System Requirements

 6.1. Hardware Requirements

 6.2. Software Requirements

27

27

27

7 Proposed Modules

 7.1. Library Design

 7.1.1. Mathematical Logic

 7.1.2. Set Theory

 7.1.3. Graph Theory

 7.1.4. Number Theory

 7.1.5. Linear Algebra

 7.1.6. Combinatorics

 7.2. Preprocessor

 7.3. Deployment of the DSL

28

28

28

28

29

30

30

31

31

31

8 Implementation and Results

 8.1. Mathematical Logic

 8.2. Set Theory

 8.3. Graph Theory

 8.4. Number Theory

 8.5. Linear Algebra

 8.6. Combinatorics

 8.7. Applications

 8.7.1. Caesar Cipher

 8.7.2. Transposition Cipher

 8.7.3. RSA Encryption and Decryption

 8.7.4. Diffie-Hellman Key Exchange

 8.7.5. Simultaneous Linear Equations

 8.7.6. Mersenne Prime Numbers

32

32

33

36

39

42

45

45

45

46

46

46

46

46

9 Screenshots 47

10 Conclusion and Future Scope 56

11 References 57

12 Appendix

 12.1. DSL Library Modules

 12.2. Preprocessor

58

58

85

LIST OF FIGURES

Sr. No. Name of the Figure Page No.
1 Selecting an Implementation Design Pattern 14

2 Flow Diagram for Embedded DSL 23

3 Flow Diagram for Preprocessed DSL 24

4 Flow Diagram for Interpreted DSL 25

5 The Design Selected for Implementation 26

6 Functions for Mathematical Logic in GHCi 47

7 Functions for Sets in GHCi 47

8 Functions for Relations in GHCi 47

9 Functions for Graphs in GHCi 33

10 Functions for Trees in GHCi 48

11 Functions for Base Manipulation in GHCi 48

12 Functions for Fibonacci Sequence in GHCi 48

13 Functions for Modular Arithmetic in GHCi 49

14 Functions for Prime Numbers in GHCi 49

15 Functions for Matrices in GHCi 50

16 Functions for Vectors in GHCi 50

17 Functions for Combinatorics in GHCi 51

18 Enciphering using Caesar Cipher in GHCi 51

19 Deciphering using Transposition Cipher in GHCi 52

20 Encryption using RSA 52

21 Decryption using RSA 53

22 Diffie-Hellman Key Exchange 53

23 Solution to Simultaneous Linear Equations 54

24 Solution to Simultaneous Linear Equations in Eclipse 54

25 List of Mersenne Prime Numbers‟ powers up to 1000 55

26 List of Mersenne Prime Numbers up to 2
100

-1 55

Mathematical Programming Language Page 1

1. INTRODUCTION

A programming language is an artificial language that is used to communicate instructions to

a machine, particularly a computer. Programming languages are used to create “programs”

that control the behavior of a machine and/or express algorithms precisely.

1.1 Elements of a Programming Language

1. Syntax - The syntax of a programming language is the set of rules that define the

combinations of symbols that are considered to be correctly structured programs in

that language.

2. Semantics – The term „semantics‟ refers to the interpretation meaning of the

languages as opposed to their syntax/form. Various terms related to semantics of

programming languages are Static/Dynamic semantics, Static/Dynamic and/or

Weak/Strong Typed languages.

1.2 Standard Library

Most programming languages have an associated core library, conventionally made available

by all implementations of the language. This library typically includes definitions for

commonly used algorithms, data structures and mechanisms for input and output.

1.3 Implementation

Broadly, programming languages can be implemented in two ways – compiled and

interpreted. Compiler languages make use of a „compiler‟, which translates high-level source

code to a machine code, which in turn is later executed. Such languages are typically faster

and require lesser memory than interpreted languages, which are implemented through an

„interpreter‟, which converts the source code to another high-level language and executes the

new code. Such implementations are slower, but their performance can be improved by

techniques such as Just-In-Time compilation in Virtual Machines, which operate on the

bytecode.

Programming languages can also be classified as General-Purpose and Domain-Specific.

General-Purpose Languages (GPLs) can be used for writing software in a variety of

application domains. For example, Ada, C, C++, C#, Java, Perl, Python, Ruby and Scala are

GPLs. Domain-Specific Languages (DSLs), on the other hand, are dedicated to a particular

problem domain. Examples of DSLs include HTML, Logo, Verilog, VHDL, Mathematica,

SQL and YACC.

Mathematical Programming Language Page 2

1.4 Quality Requirements

The final program developed, irrespective of the methodology, must have the following

properties:

1. Reliability

2. Robustness

3. Usability

4. Portability

5. Maintainability

6. Efficiency/Performance

1.5 Domain-Specific Languages

1.5.1 Usage Patterns

● Processing with standalone tools, invoked via direct user operation, often on the

command line or from a Makefile.

● Implemented using programming language macro systems, and which are converted

or expanded into a host GPL at compile-time or read-time.

● Embedded (or internal) domain-specific languages, implemented as libraries which

exploit the syntax of their host general purpose language or a subset thereof, while

adding domain-specific language elements (data types, routines, methods, macros

etc.)

● DSLs which are called (at run-time) from programs written in general purpose

languages like C or Perl, to perform a specific function, often returning the results of

operation to the "host" programming language for further processing; generally, an

interpreter or virtual machine for the domain-specific language is embedded into the

host application.

● DSLs which are embedded into user applications (e.g., macro languages within

spreadsheets) and which are used to execute code that is written by users of the

application, and/or dynamically generated by the application.

1.5.2 Design Goals

 DSLs are less comprehensive.

 DSLs are much more expressive in their domain.

 DSLs should exhibit minimum redundancy.

Mathematical Programming Language Page 3

1.5.3 Advantages

● Domain-specific languages allow solutions to be expressed in the idiom and at the

level of abstraction of the problem domain. The idea is that domain experts

themselves may understand, validate, modify, and often even develop domain-specific

language programs. However, this is seldom the case.

● Self-documenting code.

● Domain-specific languages enhance quality, productivity, reliability, maintainability,

portability and re-usability.

● Domain-specific languages allow validation at the domain level. As long as the

language constructs are safe any sentence written with them can be considered safe.

1.5.4 Disadvantages

● Cost of learning a new language vs. its limited applicability

● Cost of designing, implementing, and maintaining a domain-specific language as well

as the tools required to develop with it (IDE)

● Potential loss of processor efficiency compared with hand-coded software

● Proliferation of similar non-standard domain specific languages

● Non-technical domain experts can find it hard to write or modify DSL programs by

themselves

● Increased difficulty of integrating the DSL with other system components

● Low supply of experts in a particular DSL tends to raise labor costs

● Harder to find code examples

Mathematical Programming Language Page 4

2. LITERATURE SURVEY

2.1 Domain-Specific Languages

2.1.1 Definition

A Domain-Specific Language (DSL) is a programming language that is targeted to a

particular problem area [1]. By contrast, a General Programming Language (GPL) is used for

developing software in a variety of application domains. For example, HTML (Hypertext

Markup Language), Logo, CSS (Cascading Style Sheets), Verilog, SQL (Structured Query

Language), AutoCAD and YACC (Yet Another Compiler Compiler).

2.1.2 Characteristics of DSLs

Following are some vital characteristics of DSLs [2]:

1. A central and well-defined domain

Focusing on the jargon of a problem domain rather than on the jargon of a

computer implementation is a pervasive characteristic of good DSLs.

2. Clear notation

Part of the design of a DSL is finding a good notation, and for practical

reasons of storage and processing it is often convenient to use symbols that are

easy to enter using a keyboard, mouse, or similar input devices. DSLs are

designed to be simple, in order to reduce the learning time.

3. Comprehensible informal meaning

A key part of what makes notations work is that they have a clear meaning,

shared by all those who use them to communicate.

4. Well-suited for implementation

This feature distinguishes a DSL from jargon; it means being amenable to

rigorous, formal treatment, and being well-suited for sensible implementation

by a machine. In spite of an increased start-up cost, DSL-based methodology

renders a lesser Total Software Cost, compared to conventional methodology.

2.1.3 Need for DSLs

The following reasons have led to the need to create and use DSLs [1]:

● Creating a DSL can be worthwhile if the language allows particular types of problems

or solutions to be expressed more clearly than what existing languages would allow,

and also when the type of problem in question reappears sufficiently often.

● In order to reduce development time, tools with reusable code libraries are required.

Repetitive tasks to be performed are readily defined in DSLs with custom libraries

whose scope are restricted to the domain and hence need not be written from scratch

each time.

Mathematical Programming Language Page 5

● There is need for a solution that empowers experts with the power to specify the logic

of their applications and maintain it at the same time as and when requirements

change. Domain specific languages provide such solutions that help domain experts to

easily comprehend and create code for their application. The self-documenting

feature of DSLs supports it further.

● It is difficult to map conceptual model of solution into mainstream programming

language as most time is spent in finding ways to express natural language concepts in

terms of programming level abstractions (e.g. classes, methods, loops, conditionals,

etc.). The mapping to DSLs becomes much easier and straightforward because DSLs

make use of terms and concepts dealt in the specific domain instead of being forced to

translate ideas into notion that a GPL is able to understand.

2.1.4 Classification of DSLs

● Internal/Embedded DSLs - It uses the infrastructure of an existing programming

language (also called the host language of the DSL) to build domain-specific

semantics on top of it. For example, Rails is an internal DSL implemented on top of

the Ruby programming language.

● External DSL - It is developed ground-up and has separate infrastructure for lexical

analysis, parsing techniques, interpretation, compilation, and code generation.

Developing an external DSL is similar to implementing a new language from scratch

with its own syntax and semantics. Build tools like make, parser generators like

YACC, and lexical analysis tools like LEX are examples of popular external DSLs

[3].

2.1.5 DSLs vs. GPLs

The advantages of DSLs over GPLs are listed below [1]:

● The scope of a DSL is only up to a specific domain. It therefore allows any domain

expert to use it, in contrast with general purpose language that requires core

programming capabilities in order to develop applications.

● Domain specific languages are very expressive i.e. their syntax is readable and easily

understandable.

● DSLs reduce complexity by screening away the internal complex operations of the

system. GPLs would require manual coding of every detail that becomes cumbersome

and time consuming. This leads to concise semantic rules.

● DSLs are more productive as they need lesser programming time compared to GPLs.

● Domain specific languages support standardization wherein the underlying

implementation can be changed without the need to change the code. For example,

HTML is browser independent and can work on all kinds of browsers.

Mathematical Programming Language Page 6

2.2 Guidelines for implementing DSLs

Guidelines can be categorized as follows based on a development-phase oriented

classification [4]:

● Language Purpose - Discusses design guidelines for the early activities of the

language development process.

● Language Realization - Introduces guidelines which discuss how to implement the

language.

● Language Content - Contains guidelines which focus on the elements of a language.

● Concrete Syntax - Concentrates on design guidelines for the readable (external)

representation of a language.

● Abstract Syntax - Concentrates on design guidelines for the internal representation of

a language.

2.2.1 Language Purpose

Guideline 1 -

An early identification of the language uses have strong influence on the concepts the

language will allow to offer. The concepts can be designed and analyzed for

feasibility once the uses have been identified.

Guideline 2 -

Once the uses of a language have been identified it is helpful to embed these forms of

language uses into the overall software development process. People/roles have to be

identified that develop, review, and deploy the involved programs and models. After

this, the developers can question whether the language is too complex or if it captures

all the necessary domain elements.

Guideline 3 -

Since DSLs are typically designed for a specific purpose, each feature of a language

should contribute to this purpose, otherwise it should be omitted for the language to

remain consistent.

2.2.2 Language Realization

Guideline 4 -

The end-user‟s preferences must be matched with the advantages and disadvantages

of both textual and graphical realization. Textual realization have the advantage of

faster development and are platform and tool independent, whereas graphical models

provide better overview and understanding of models in some cases.

Guideline 5 -

The labor-intensive task of developing a new language can be made easier with

reusing existing languages. The most general and useful form of language reuse is

thus the unchanged embedding of an existing language into another language.

Mathematical Programming Language Page 7

Guideline 6 -

If the language cannot be simply composed from some given language parts, it is a

good idea to reuse existing language definitions as much as possible. Taking the

definition of a language as a starter to develop a new one is better than creating a

language from scratch. Both the concrete and the abstract syntax will benefit from this

form of reuse. The new language might then retain a look-and-feel of the original,

thus allowing the user to easily identify familiar notations.

Guideline 7 -

A language designer should reuse existing type systems to improve comprehensibility

and to avoid errors that are caused by misinterpretations in an implementation.

2.2.3 Language Content

Guideline 8 -

While designing a language, only those domain concepts need to be reflected that

contribute to the tasks the language shall be used for.

Guideline 9 -

Simplicity is one of the main targets in designing languages. If it is complex, it raises

the barrier of introducing the language. Even when such a language is introduced,

unnecessary complexity minimizes the benefit the language should have yielded.

Guideline 10 -

Designing only what is necessary facilitates a quick and successful introduction of the

DSL in the domain.

Guideline 11 -

Limiting the number of language elements makes the DSL easier to understand. To

include elaborated content, libraries can be used. This results in a flexible, extensible

and extensive, yet simple language.

Guideline 12 -

Having several concepts at hand to describe the same fact allows users to model it

differently and this redundancy is a constant source of problems, such as those found

in C++ and Perl. Thus, one must avoid conceptual redundancy.

Guideline 13 -

In order to have an efficient execution, and given the higher level of abstraction to be

provided, inefficient language elements must be avoided, that would lead to poor

generated code.

Mathematical Programming Language Page 8

2.2.4 Concrete Syntax

Guideline 14 -

Rather than inventing a new notation, it is useful to adopt the existing formal notation

used by domain experts.

Guideline 15 -

A descriptive notation supports both learnability and comprehensibility of a language

especially when reusing frequently-used terms and symbols of domain knowledge.

Guideline 16 -

Easily distinguishable representations of language elements are a basic requirement

to support understandability.

Guideline 17 -

Introduction of syntactic sugar can help improve the language‟s expressiveness and

efficiency, if used appropriately.

Guideline 18 -

In order to make models more understandable to other developers, provision of

comments must be made. Preferably, they must be a widely accepted standard form,

such as /* … */ or //.

Guideline 19 -

Providing organizational structure for models, such as modules and packages, to the

language makes it desirable for users to understand and use.

Guideline 20 -

Comprehensibility of notation is important and must be balanced with compactness

for the language to be effective.

Guideline 21 -

To increase understandability, the same look-and-feel should be used for all the

elements within a language.

Guideline 22 -

Usage conventions can be used which describe more detailed regulations that can, but

need not be enforced.

Mathematical Programming Language Page 9

2.2.5 Abstract Syntax

Guideline 23 -

Given the concrete syntax, the abstract syntax and especially its structure should

follow closely to the concrete syntax to ease automated processing, internal

transformations and also presentation (pretty printing) of the model.

Guideline 24 -

A good layout should be preferred so that it does not affect translation from concrete

to abstract syntax.

Guideline 25 -

Enabling modularity helps in developing complex systems.

Guideline 26 -

Interfaces between parts of a model help users to provide proper exchange of data.

2.3 Developing DSLs

DSL development generally involves the following phases [5]:

1. Decision

2. Analysis

3. Design

4. Implementation

5. Deployment

2.3.1 Decision

The decision phase corresponds to the “when”-part of DSL development. Deciding in favor

of a new DSL is usually not easy. The investment in DSL development (including

deployment) has to pay for itself by more economical software development and/or

maintenance later on. In practice, short-term considerations and lack of expertise may easily

cause indefinite postponement of the decision.

To aid in the decision process, we identify a number of decision patterns. These are common

situations that potential developers find themselves in that might motivate the use of DSLs.

Underlying these patterns are general, interrelated concerns such as

● improved software economics,

● enabling of end-user programming or end-user specification,

● enabling of domain-specific analysis, verification, optimization, and/or

transformation.

Following are some commonly used Decision Patterns:

1. Notation

The availability of appropriate (new or existing) domain-specific notations is

the decisive factor. Domain-specific notation beyond the limited user-

Mathematical Programming Language Page 10

definable operator notation offered by GPLs may be added to an existing

application library.

2. Task Automation

Programmers often spend time on GPL programming tasks that are tedious

and follow the same pattern. In such cases, the required code can be generated

automatically by an application generator for an appropriate DSL.

3. Data Structure Representation

Data-driven code relies on initialized data structures whose complexity may

make them difficult to write and maintain. These structures are often more

easily expressed using a DSL.

4. Data Structure Traversal

Traversals over complicated data structures can often be expressed better and

more reliably in a suitable DSL.

5. System Front-end

DSL based front-end may be used for handling a system‟s configuration and

adaptation.

6. Interaction

Text or menu based interaction with application software often has to be

supplemented with an appropriate DSL for the specification of complicated or

repetitive input.

7. AVOT (Analysis-Verification-Optimization-Transformation)

Domain-specific analysis, verification, optimization, and transformation of

application programs written in a GPL are usually not feasible, because the

source code patterns involved are too complex or not well defined. Use of an

appropriate DSL makes these operations possible.

2.3.2 Analysis

In the analysis phase of DSL development, the problem domain is identified and domain

knowledge is gathered. This requires input from domain experts and/or the availability of

documents or code from which domain knowledge can be obtained. Most of the time, domain

analysis is done informally, but sometimes domain analysis methodologies such as DARE

(Domain Analysis and Reuse Environment), DSSA (Domain-Specific Software

Architectures), FODA (Feature-Oriented Domain Analysis) or ODM (Organization Domain

Modeling) are used.

The output of formal domain analysis varies widely, but is some kind of representation of the

domain knowledge obtained. It may range from a feature diagram, which is a graphical

representation of assertions (propositions, predicates) about software systems in a particular

Mathematical Programming Language Page 11

domain, to a domain implementation consisting of a set of domain-specific reusable

components, or a full-fledged theory in the case of highly developed scientific domains.

2.3.3 Design

Approaches to DSL design can be characterized along two orthogonal dimensions: the

relationship between the DSL and existing languages, and the formal nature of the design

description.

The easiest way to design a DSL is to base it on an existing language. One possible benefit is

familiarity for users, but this only applies if the domain users are also programmers in the

existing language. Another approach is to take an existing language and extend it with new

features that address domain concepts. In most applications of this pattern the existing

language features remain available. The challenge is to integrate the domain-specific features

with the rest of the language in a seamless fashion.

The DSL designer has to keep in mind both the special character of DSLs as well as the fact

that users need not be programmers. Since ideally the DSL adopts established notations of the

domain, the designer should suppress a tendency to improve them.

Once the relationship to existing languages has been determined, a DSL designer must turn to

specifying the design before implementation. In an informal design the specification is

usually in some form of natural language probably including a set of illustrative DSL

programs. A formal design would consist of a specification written using one of the available

semantic definition methods. The most widely used formal notations include regular

expressions and grammars for syntax specifications, and attribute grammars, rewrite systems

and abstract state machines for semantic specification. There are several tools available

which automate these techniques for DSL developers.

Commonly used Design Patterns for DSLs are:

● Language Exploitation

DSL is based on an existing language. Important special cases:

■ Piggyback: Existing language is partially used.

■ Specialization: Existing language is restricted.

■ Extension: Existing language is extended.

● Language Extension

A DSL is designed from scratch with no commonality with existing languages.

● Informal

A DSL is described informally

● Formal

A DSL is described formally using an existing semantics definition method

such as attribute grammars, rewrite systems, or abstract state machines.

Mathematical Programming Language Page 12

2.3.4 Implementation

When a DSL is designed, the most suitable implementation approach should be chosen. Some

approaches are:

1. Interpreter

DSL constructs are recognized and interpreted using a standard fetch-decode-

execute cycle. This is appropriate for languages having a dynamic character or

if execution speed is not an issue. The advantages of interpretation over

compilation are greater control over the execution environment and easier

extension.

2. Compiler/application generator

DSL constructs are translated to base language constructs and library calls. A

complete static analysis can be done on the DSL program/ specification. DSL

compilers are often called application generators.

3. Preprocessor

DSL constructs are translated to constructs in the base language. Static

analysis is limited to that done by the base language processor. Important

special cases:

■ Source-to-source transformation: DSL source code is transformed

(translated) into source code of existing language (the base language).

■ Pipeline: Processors successively handling sublanguages of a DSL and

translating them to the input language of the next stage. This pattern

also includes examples where only simple lexical processing is

required, without complicated tree-based syntax analysis.

4. Embedding

In the embedding approach, a DSL is implemented by extending an existing

GPL (the host language) by defining specific abstract data types and operators.

Application libraries are the basic form of embedding.

5. Extensible compiler/interpreter

GPL compiler/interpreter is extended with domain-specific optimization rules

and/or domain-specific code generation. While interpreters are usually

relatively easy to extend, extending compilers is hard unless they were

designed with extension in mind.

6. Commercial Off-The-Shelf (COTS)

Existing tools and/or notations are applied to a specific domain.

7. Hybrid

A combination of the above approaches is used.

Mathematical Programming Language Page 13

2.3.4.1 Implementation Trade-offs

Majority of the DSLs are implemented using either the Interpreted design or Embedding

design. The advantages and disadvantages for these are listed below:

2.3.4.1.1 Interpreted Design

Advantages:

● DSL syntax can be close to notations used by domain experts,

● Good error reporting possible,

● Domain-specific analysis, verification, optimization, and transformation (AVOT)

possible

Disadvantages:

● The development effort is high because a complex language processor must be

implemented,

● The DSL is more likely to be designed from scratch, often leading to incoherent

designs compared with exploitation of an existing language,

● Language extension is hard to realize because most language processors are not

designed with extension in mind.

The disadvantages can be minimized or eliminated when:

● A language development system or toolkit is used so that much of the work of

language processor construction is automated, and

● A modular and extensible formal method for DSL design is used so that new

features can be added without significant modification to the processing of old

features.

2.3.4.1.2 Embedding Design

Advantages:

● Development effort is modest because an existing implementation can be reused,

● Often produces a more powerful language than other methods since many features

come for free,

● Reuse of host language infrastructure (development and debugging environments:

editors, debuggers, tracers, profilers etc.),

● User training costs might be lower since many users may already know the host

language.

Disadvantages:

● Syntax is far from optimal as most languages do not allow arbitrary syntax

extension,

● Overloading existing operators can be confusing if the new semantics does not

have the same properties as the old,

● Bad error reporting because messages are in terms of host language concepts

instead of DSL concepts,

● Domain-specific optimizations and transformations are hard to achieve, so

efficiency may be affected, particularly when embedding in functional languages.

Mathematical Programming Language Page 14

Fig. 1. Selecting an Implementation Design Pattern

Mathematical Programming Language Page 15

2.3.5 Deployment

The mode of deployment of DSLs depends on the implementation design pattern selected. In

case of an embedded DSL, the language can simply be deployed as a library for its base

language. If the DSL is a preprocessed DSL, the preprocessor must be available to users as an

executable file or installable module. If the implementation design pattern selected is either

that of an interpreter of compiler/application generator, then a setup file would have to be

created and be executed by users for installation.

2.3.6 DSL Design and Implementation Support

The DSL development process can be facilitated by using a language development system or

toolkit. The available toolkits have widely different capabilities and are in widely different

stages of development, but are based on the same general principle: they generate tools from

language descriptions. Some of these systems support a specific DSL design methodology,

while others have a largely methodology-independent character.

The input to these systems is a description of various aspects of the DSL to be developed in

terms of specialized meta-languages. Depending on the type of DSL, some important

language aspects are syntax, pretty-printing, consistency checking, execution, translation,

transformation, and debugging. The meta-languages used for describing these aspects are

themselves DSLs for the particular aspect in question. Some examples of such tools are:

● ASF + SDF

● AsmL

● Draco

● Eli

● Gem-Mex

● InfoWiz

● JTS

● Khepera

● Kodiyak

● LaCon

● LISA

● Metatool

● POPART

● smgn

● SPARK

● Sprint

● Stratego

● TXL

Mathematical Programming Language Page 16

3. PROBLEM STATEMENT

A Domain-Specific Language proposed by us would aid users working with concepts of

mathematics. The domain of this programming language is discrete mathematics. The basic

library modules, which constitute the essential part of the language, include Set theory,

Functions, Mathematical logic, Linear algebra and Number theory, while Combinatorics and

Graph theory are the advanced modules.

As part of Set theory, the language supports concepts of Sets and Relations in the form of

library modules. The library module for Graph theory provides data types, operations and

functions on Graphs and Trees. Logical operators, namely NOT, AND, OR, NAND, NOR,

XOR, XNOR, logical implication, logical equality and logical quantifiers (universal and

existential) would be supported. Under Linear algebra, structures and functions for Matrices,

Determinants and Vectors have been developed. Concepts relating to prime numbers, such as

generation and testing, and multi-precision arithmetic would be included as part of Number

theory. Support for Combinatorics would be in the form of functionality for calculating

factorials, generating permutations and combinations of sets of elements. Our programming

language would allow users to create and define their own functions. With these, a

programmer can use complex functions as well.

Mathematical Programming Language Page 17

4. SCOPE

The developed Domain Specific Language (DSL) has library modules for Set theory,

Mathematical Logic, Graph theory, Combinatorics, Number theory, Linear algebra and

Functions. In addition, it has a preprocessor that translates the DSL‟s syntax into equivalent

base language syntax.

Besides aiding users working with structures of the aforementioned fields, the DSL would be

useful in studying and describing objects and problems in branches of computer science, such

as algorithms, programming languages, cryptography, automated theorem proving

and software development. Such computer implementations are significant in applying ideas

from discrete mathematics to real-world problems, such as in computer networks, operations

research and social science.

For instance, Set theory is considered as a foundation for mathematical analysis, topology,

abstract algebra, and discrete mathematics. Modern cryptography relies heavily on number

theory. This is particularly true for public-key cryptography, which is employed for example

in the SSL and TLS protocols. Furthermore, Graph theory finds applications in social

networking, schedule development, design and analysis of computer networks, etc. Linear

algebra is useful for solving Markov chains, which are probabilistic tools, used from

biological population dynamics models and economics predictions, to traffic-flow models

and incompressible fluid-flow dynamics. Combinatorics has many applications in

optimization, computer science, analysis of algorithms, ergodic theory and statistical physics.

The syntax of our programming language is close to that used by domain experts for discrete

mathematics. In this way, the language is easy to comprehend and learn for everyone.

Mathematical Programming Language Page 18

5. SYSTEM DESIGN

5.1 Functional Programming Languages

Functional programming languages are a class of languages designed to reflect the way

people think mathematically, rather than reflecting the underlying machine. The most

commonly used functional languages are Standard ML, Haskell, and “pure” Scheme (a

dialect of LISP), which, although they differ in many ways, share most of the properties of

functional programming.

5.1.1 Functional Programming

Functional programming is a programming paradigm that treats computation as the

evaluation of mathematical functions and avoids state and mutable data. It emphasizes the

application of functions, in contrast to the imperative programming style, which emphasizes

changes in state. It has its roots in lambda calculus to investigate function definition, function

application, and recursion.

5.1.2 Benefits of Functional Programming

Following are the reasons why using functional programming is beneficial:

1. Notation good for mathematical representation

It is possible to reason mathematically about functional programs in the same

way one does in elementary algebra.

2. Functions are first-class

A functional programming language supports passing functions as arguments

to other functions, returning them as the values from other functions, and

assigning them to variables or storing them in data structures.

3. Higher-order functions

They are functions that can either take other functions as arguments or return

them as results. Higher-order functions enable partial application or currying,

a technique in which a function is applied to its arguments one at a time, with

each application returning a new function that accepts the next argument.

4. Referential transparency

An expression is said to be referentially transparent if it can be replaced with

its value without changing the behavior of a program (in other words, yielding

a program that has the same effects and output on the same input). Unlike

mathematics and programs in functional languages, programs in imperative

languages lack referential transparency.

Mathematical Programming Language Page 19

5. Recursion

Iteration (looping) in functional languages is usually accomplished via

recursion. Recursive functions invoke themselves, allowing an operation to be

performed over and over.

6. Good for structured programming

To make a program structured it is necessary to develop abstractions and split

it into components which interface each other with those abstractions.

Functional languages aid this by making it easy to create clean and simple

abstractions.

7. Short and easy to comprehend

Imperative programs tend to emphasize the series of steps taken by a program

in carrying out an action, while functional programs tend to emphasize the

composition and arrangement of functions, often without specifying explicit

steps. This results in shorter codes.

8. Ease of maintenance

The number of lines of code is a primary criteria for determining the ease of

maintenance of programs. Since programs in functional programming

languages are shorter, and are self-documenting in nature, they are easier to

maintain than those written in imperative programming languages.

9. High productivity

Shorter development time (due to reduced length of programs) and ease of

maintenance increase programmers‟ productivity.

5.2 Haskell

Haskell is a standardized, general-purpose purely functional programming language, with

non-strict semantics and strong static typing. It is named after logician Haskell Curry. In

Haskell, "a function is a first-class citizen" of the programming language. As a functional

programming language, the primary control construct is the function.

Haskell is unique for two reasons:

● It is purely functional. This means that in general, functions in Haskell do not have

side effects. There is a distinct type for representing side effects, orthogonal to the

type of functions. A pure function may return a side effect which is subsequently

executed, modeling the impure functions of other languages.

● Haskell provides a very modern type system which incorporates features like

typeclasses and generalized algebraic data types.

https://en.wikipedia.org/wiki/Recursion

Mathematical Programming Language Page 20

5.2.1 Advantages of Haskell

Following are the advantages of developing Domain-Specific Languages (DSLs) in Haskell:

● Free and Open Source

Haskell has the benefit of being a free and open source software (FOSS)

almost from the beginning. As a result, a variety of libraries, documentation

and support is available for programmers. This also allows the language to

continuously evolve over time.

● Lazy Evaluation

Lazy evaluation or call-by-need is an evaluation strategy which delays the

evaluation of an expression until its value is needed (non-strict evaluation) and

which also avoids repeated evaluations (sharing). The benefits of lazy

evaluation include:

● Performance increases by avoiding needless calculations, and error

conditions in evaluating compound expressions

● The ability to construct potentially infinite data structures

● The ability to define control flow (structures) as abstractions instead of

primitives

In Haskell, an infinite-length list of natural numbers can be defined simply as:

a = [1..]

When this statement is executed, the entire infinite-length list is not loaded

into the memory. Rather, when a particular element from the list is indexed,

only then is it returned. The reference for index „5‟ is performed by the simple

statement: b = a !! 5

● Expressive type system

The use of algebraic data types and pattern matching makes manipulation of

complex data structures convenient and expressive; the presence of strong

compile-time type checking makes programs more reliable, while type

inference frees the programmer from the need to manually declare types to the

compiler.

● Pure functional programming language

As a result of being a “pure” functional programming language, the notation

of Haskell is closer to mathematical notations than other programming

languages, functional or otherwise.

● Very High Level Language (VHLL)

This results in providing users with good abstraction, aiding programmer

productivity and enhancing maintainability of the programs. For instance,

Quicksort in Haskell is:

http://en.wikipedia.org/wiki/Evaluation_strategy
http://en.wikipedia.org/wiki/Evaluation_strategy
http://en.wikipedia.org/wiki/Non-strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation
http://en.wikipedia.org/wiki/Sharing#In_computer_science
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Control_flow

Mathematical Programming Language Page 21

quicksort :: Ord a => [a] -> [a]

quicksort [] = []

quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)

 where

 lesser = filter (< p) xs

 greater = filter (>= p) xs

This is much shorter than the equivalent program in imperative languages such

as C or Java.

● Composite functions

Provision of Higher Order Functions allows a programmer to work with

composite functions, which are simply a combination of two or more first

order functions. For Haskell, function composition can be explained by the

following code:

desort = (reverse . sort)

 countdown = desort [2,8,7,10,1,9,5,3,4,6]

 -- output: [10,9,8,7,6,5,4,3,2,1]

Here, the dot „.‟ operator is used for combining the two built-in functions

„sort‟ and „reverse‟. The argument of the first function is the value returned

from the second.

● Smart garbage collector

Haskell computations produce a lot of memory garbage - much more than

conventional imperative languages. It's because data are immutable so the only

way to store every next operation's result is to create new values. In particular,

every iteration of a recursive computation creates a new value. But GHC

(Glasgow Haskell Compiler) is able to efficiently manage garbage collection,

so it's not uncommon to produce 1GB of data per second with most part being

garbage collected immediately. Incidentally, GHC‟s efficiency in execution

and memory management is second only to that of GCC.

● Polymorphic types and functions

Most polymorphism in Haskell falls into one of two broad categories:

parametric polymorphism and ad-hoc polymorphism. Parametric

polymorphism refers to when the type of a value contains one or more

(unconstrained) type variables, so that the value may adopt any type that

results from substituting those variables with concrete types. Ad-hoc

polymorphism refers to when a value is able to adopt any one of several types

because it, or a value it uses, has been given a separate definition for each of

those types. Polymorphism is defined for functions as well. This means that

functions can take the same number of arguments as those of different data

types. For example, a sorting function can take as input a list of integers,

floating point numbers, strings or any other data type. A function signature

such as id :: a -> a denotes that the function „id‟ is defined for data „a‟,

which may be of any data type.

http://www.haskell.org/haskellwiki/Polymorphism#Parametric_polymorphism
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism

Mathematical Programming Language Page 22

● Extensible

Haskell was built keeping in mind the extensibility required for modern

functional programming languages. This allows a provision of user defined

functions, types, classes, modules, etc.

● Very few reserved words

As a result, a programmer can have a multitude of names for variables and

functions.

● Flexible syntax

Haskell has a very flexible syntax, and offers higher-order functions.

Therefore, we can often mimic the visual style of a particular domain directly

within the language.

● Syntactic sugar

Syntactic sugar is a computer science term that refers to syntax within a

programming language that is designed to make things easier to read or to

express. Specifically, a construct in a language is called syntactic sugar if it

can be removed from the language without any effect on what the language

can do: functionality and expressive power will remain the same.

● Finite and infinite-precision integer arithmetic

Haskell has two integral types:

 Int- limited-precision or single-precision integers

 Integer - arbitrary-precision integers

5.3 Implementation Strategies

Using Haskell, the proposed Domain-Specific Language (DSL) for mathematics could be

implemented in the following three ways:

5.3.1 Embedded DSL

An Embedded Domain Specific Language (EDSL), or Internal DSL, is a DSL that is defined

as a library for a generic "host" programming language. The embedded DSL inherits the

generic language constructs of its host language - sequencing, conditionals, iteration,

functions, etc. - and adds domain-specific primitives that allow programmers to work at a

much higher level of abstraction. There are two major degrees of embedding, shallow and

deep.

● Shallow Embedding

All Haskell operations immediately translate to the target language. E.g. the

Haskell expression a+b is translated to a String like "a + b" containing that

target language expression.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Syntax
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Function_(engineering)
http://en.wikipedia.org/wiki/Expressive_power
http://en.wikipedia.org/wiki/Expressive_power

Mathematical Programming Language Page 23

● Deep Embedding

Haskell operations only build an interim Haskell data structure that reflects the

expression tree. E.g. the Haskell expression a+b is translated to the Haskell

data structure Add (Var "a") (Var "b"). This structure allows

transformations like optimizations before translating to the target language.

For this style of programming to work well, the syntax of the generic language must be

flexible and expressive enough to "get out of the way" of the embedded DSL. That usually

means that the host language should have a very minimal syntax. Since Haskell provides us

with all these, it is an ideal choice for a host programming language.

The advantage of building a DSL as an EDSL is that the development time is significantly

reduced. Moreover, if users are satisfied with or used to the syntax of the host language, then

they would face no problems in using the EDSL, since the syntax would remain identical.

Fig. 2. Flow Diagram for Embedded DSL

The user‟s program would be written in the new DSL. The library would have modules for

functionality regarding Set theory, Mathematical logic, Combinatorics, etc. The Haskell

compiler would take this program, along with the library, as input, and then produce an

executable.

5.3.2 Preprocessed DSL

In situations where the syntax of a host language may be a limitation, DSLs can be developed

by creating a preprocessor that translates the DSL‟s syntax into the host language‟s syntax,

and then executes the resultant host language code. This type of preprocessor is classified as a

Syntactic Preprocessor.

Programs for the language to be developed are operated upon by such a preprocessor, which

not only translates the syntax into the host language‟s syntax, but also imports required

libraries for the generated code. This code is then be compiled and executed by the host

language‟s compiler to produce the output.

Mathematical Programming Language Page 24

In this way, a preprocessor helps in

● Customizing syntax

● Extending a language

● Specializing a language

Fig. 3. Flow Diagram for Preprocessed DSL

The user‟s program would be written in the new DSL. The library would have modules for

functionality regarding Set theory, Mathematical logic, Combinatorics, etc. The preprocessor

would process the elements of the DSL and convert them to equivalent Haskell code. This

code would then be compiled to produce an executable.

5.3.3 Interpreted DSL

An interpreter normally means a computer program that executes, i.e. performs, instructions

written in a programming language. An interpreter may be a program that either

a) executes the source code directly

b) translates source code into some efficient intermediate representation (code) and

immediately executes this

c) explicitly executes stored precompiled code made by a compiler which is part of the

interpreter system

While interpreting and compiling are the two main means by which programming languages

are implemented, these are not fully mutually exclusive categories, one of the reasons being

that most interpreting systems also perform some translation work, just like compilers. The

Mathematical Programming Language Page 25

terms "interpreted language" or "compiled language" merely mean that the canonical

implementation of that language is an interpreter or a compiler; a high level language is

basically an abstraction which is (ideally) independent of particular implementations.

Following are the advantages of using an interpreter for implementing a DSL:

● Development cycle

A programmer using an interpreter does a lot less waiting, as the interpreter

usually just needs to translate the code being worked on to an intermediate

representation (or not translate it at all), thus requiring much less time before

the changes can be tested.

● Distribution

An interpreted program can be distributed as source code. It needs to be

translated in each final machine, which takes more time but makes the

program distribution independent of the machine's architecture.

The functioning of the interpreter can be depicted as:

Fig. 4. Flow Diagram for Interpreted DSL

The DSL source code would be given as input to the developed interpretation system. This

source code would be first passed to the Lexical Analyzer, which would tokenize the content

and pass it to the Syntax Analyzer, and then to the Semantic Analyzer. On successful parsing,

the Code Generator would produce an intermediate code representation. Combined with the

external libraries, the Interpreter executes the Intermediate Language Code to give the

execution result.

Mathematical Programming Language Page 26

5.4 Selected Design

Of the three strategies mentioned previously, we have chosen to implement our programming

language as a Preprocessed Domain-Specific Language (DSL). A preprocessor allows the

DSL to have syntax different than the base language, which in this case is Haskell. Moreover,

preprocessing is a pragmatic choice as efficiency of the generated code would not be affected

if a Haskell compiler, such as GHC (Glasgow Haskell Compiler), were to operate on it by

translating it to machine code.

Fig. 5. The design selected from among the three possible ones

Mathematical Programming Language Page 27

6. SYSTEM REQUIREMENTS

6.1 Hardware Requirements

To develop the Mathematical Programming Language, the system hardware requirements are

as follows:

● Development Platform Architecture: 64-bit (x86-64/amd64)

● Minimum Disk Space: 200MB

● Minimum Memory Required: 64MB

6.2 Software Requirements

Following is a list of software required for the development of Mathematical Programming

Language:

 Development Platform: Linux, x86-64/amd64

 Operating System: Fedora 17

 Base Language: Haskell

 Haskell Compiler: GHC (Glasgow Haskell Compiler), version 7.0.4

Mathematical Programming Language Page 28

7. PROPOSED MODULES

The DSL‟s implementation required developing of a library of modules for discrete

mathematics and a preprocessor. The details of the same are mentioned in the following

sections.

7.1 Library Design

The library consists of modules containing data types and functions for the following fields of

discrete mathematics:

 Mathematical Logic

 Set Theory

 Graph Theory

 Number Theory

 Linear Algebra

 Combinatorics

7.1.1 Mathematical Logic

Logic is a vital topic of discrete mathematics, with applications in foundations of

mathematics, formal logic systems and proofs. Often, set theory, model theory and recursion

theory are considered as subsections of logic. In the DSL, logical operators and quantifiers

from propositional logic, Boolean algebra and predicate logic are supported. This includes

operators such as negation (NOT), conjunction (AND), disjunction (OR), exclusive

disjunction (XOR), inverse conjunction (NAND), inverse disjunction (NOR), inverse

exclusive disjunction (XNOR), logical implication (if...then), logical equality (iff), universal

quantifier (for all) and existential quantifier (there exists some) and parentheses – “(“ and “)”.

Haskell provides a unary Boolean negation function (not) and binary operators for

conjunction (&&) and disjunction (||), allowing development of other operators using these.

Besides these, in Haskell, the universal and existential quantifiers are given by “forall” and

„exists‟, respectively. The library module for mathematical logic also contains functions for

applying the operations mentioned on lists of Boolean values.

7.1.2 Set Theory

According to Georg Cantor, the founder of set theory, a set is a gathering together into a

whole of definite, distinct objects of our perception and of our thought - which are called

elements of the set. The module currently focuses on naive set theory, operations on sets,

relations, properties of relations and closures. Later, functionality would be added for groups,

rings, fields, group-theoretic lattices and order-theoretic lattices, which find applications in

cryptography and computational physics.

For sets, the module on set theory provides users with support for concepts such as checking

for membership, empty/null set, subset, superset, generating power sets, finding cardinality,

set difference, determining equality of sets, calculating Cartesian product, union of two sets,

union of a list of sets, intersection of two sets, intersection of a list of sets, checking if two

Mathematical Programming Language Page 29

sets or a list of sets are disjoint, and mapping functions to sets. Working on sets is eased

immensely with the provision of lists and list comprehension in Haskell.

Relations are sets of ordered pairs from elements of two sets, and are also called binary

relations. The module for set theory in the library of the DSL contains functions for checking

properties of relations. Important among these are those for checking if a relation is reflexive,

symmetric, asymmetric, anti-symmetric, transitive, equivalence, partial order (weak or strict)

and total order (weak or strict). With these as a base, functions for creating reflexive,

symmetric and transitive closures are also developed and included in the library. As relations

are essentially sets at their core, they can be combined by the operations of union,

intersection, difference and composition. Composition also allows calculating powers of a

relation and thus, the determination of transitive closures. The module also contains functions

to check if a relation is a weak partial order, strong partial order, weak total order or strong

total order.

7.1.3 Graph Theory

Considered the prime objects of study in discrete mathematics, and ubiquitous models for

natural as well as man-made structures, graphs and trees are an important component of the

DSL. This module provides support for users in computer science for studying networks,

flow of computation, social network analysis, etc. In mathematics it would help users

working with geometry, topology and group theory.

Graphs can be formally represented as the triple G = (V, E, ϕ), where V is a finite set of

vertices, E is the finite set of edges and ϕ is the incidence function, with domain E and co-

domain P
2
(V). Here, P

2
(V) represents the two-element subset of the power set P(V). For

example, consider the graph represented as G = (V, E, ϕ), such that V = {A, B, C}, E = {a, b,

c, d} and ϕ = {(A, B), (A, B), (A, C), (B, C)}. Graphs may also be directed, in which case,

the co-domain of ϕ would become V*V. An example of a directed graph can be G = (V, E,

ϕ), such that V = {A, B, C}, E = {a, b, c, d} and ϕ = {(A, B), (B, A), (A, C), (C, B)}.

Important graph operations such as finding in-degree and out-degree of vertices, finding

nodes adjacent to a given node, checking for cycles, calculating union of graphs, determining

if a graph is a subgraph of another, finding existence of Euler paths, Euler circuits,

Hamiltonian paths and Hamiltonian circuits are included in the module for graph theory in

the DSL‟s library as well. Apart from these operations, the library also contains algorithms

for Dijkstra‟s shortest path, Prim‟s and Kruskal‟s Minimum Spanning Tree algorithms,

Depth-First Search, and Breadth-First Search.

This library module also contains functionality for Trees, primarily in the form of Binary

Trees. It also contains frequently used functions such as in-order, pre-order and post-order

tree traversals, inserting nodes in a tree, finding total number of nodes, searching for a

particular node using Binary Search, determining height of a tree, checking if a tree is

balanced and calculating depth of a node.

Mathematical Programming Language Page 30

7.1.4 Number Theory

Number theory is one of the oldest and largest branches of mathematics. It primarily deals

with the study of integers, but it also involves studying prime numbers, rational numbers and

equations. Some applications of concepts in number theory are finding solutions to

simultaneous linear equations, numerical analysis, group theory, field theory and elliptic

curve cryptography.

The module for number theory covers generation of prime numbers using Sieve of

Eratosthenes, primality testing using trial division and Miller-Rabin test, prime factorization

of integers and random number generation. This module also contains functions for Fibonacci

numbers, including generating a list of Fibonacci terms and finding the nth term of the

Fibonacci series.

Elementary number theory consists of base/radix operations and manipulations. Accordingly,

the module provides support for handling bases ranging up from 1 to any integer. This

includes operations of addition, subtraction, multiplication, division and exponentiation in all

bases, apart from conversion of numbers from a particular base to another.

Another important part of number theory is modular arithmetic. The DSL‟s library supports

solving linear congruence relations of the form ax ≡ b (mod m) and also evaluation of

modular operations such as addition, multiplication and exponentiation.

7.1.5 Linear Algebra

The branch of linear algebra deals with vector spaces and linear mappings between these

spaces. These are used to represent systems of linear equations in multiple unknowns.

Combined with calculus, linear algebra facilitates the solution of differential equations.

Linear algebra is applied in quantum mechanics, systems using the Fourier series, and several

fields where simultaneous linear equations need to be solved.

The module for linear algebra in the DSL‟s library contains data structures for Vectors and

Matrices, which are the essence of linear algebra. Vectors are represented as n-valued tuples

<v1, v2 ... vn>, and n×m Matrices as [row1, row2 ... rown], where rowi =

[ai1, ai2 ... aim] and aij is an element. For example, consider the examples of a

vector used in three-dimensional Cartesian system: Vector <3,2,-7> and the third order

unit matrix: Matrix [[1,0,0], [0,1,0], [0,0,1]]. Operations such as finding

the order of a matrix, calculating trace, transpose, determinant, inverse, multiplication,

division, addition, subtraction and power of matrices are frequently applied in matrix theory,

and functions for the same have been included in the library module.

The module also contains functions for checking properties of a matrix or whether a matrix is

of a certain type. Some of these include checking if a matrix is symmetric, skew-symmetric,

orthogonal, involutory, 0/1, unit/identity matrix, a zero matrix or a one matrix. In addition, a

mapping function for matrices allows the application of a single function to all the elements

of a matrix. The module contains functions for generating unit matrices of order n, m×n zero

and one matrices.

Mathematical Programming Language Page 31

For vectors, functions are developed for addition, subtraction, multiplication (scalar/dot/inner

product, vector product, scalar triple product and vector triple product), calculating

magnitude of a vector, calculating angle between two vectors, mapping a function to a vector,

checking if a vector is a unit vector, determining order of vectors and extracting an element

or even a range of elements from a vector. The module also contains functions to find sum

and difference of a list of Vectors.

7.1.6 Combinatorics

This branch of mathematics deals with the study of countable discrete structures. This

involves counting the structures, determining criteria, and constructing and analyzing objects

satisfying these criteria. In computer science, combinatorics is used frequently in analysis of

algorithms to obtain estimates and formulas.

For users involved in computational combinatorics, this DSL would be helpful as it has a

module consisting of frequently used functions such as those to find factorials, permutations

and combinations, generate permutation and combination lists and also to generate random

permutations using the Fisher-Yates/Knuth shuffle algorithm.

7.2 Preprocessor

The language is a Preprocessed DSL, wherein the Preprocessor is tasked with translating the

language‟s syntax into equivalent Haskell representation. The Preprocessor is essentially a

Bash script, „preprocess.sh‟, which invokes another program, „script‟, written in sed. The tool

sed was selected since it provides excellent functionality for working with regular

expressions. Since the preprocessor would not perform as much computation as a parser,

scripts written in sed suffice. When the Bash script is called by GHC with users‟ programs

written in the DSL as arguments, the sed script is executed over the programs and Haskell

programs are generated for these files. This program is compiled by GHC to produce a binary

executable. When executed, it generates the output.

The commands to compile and run a DSL program named „myprogram.hs‟ are:

$ ghc –F –pgmF ./preprocess.sh myprogram.hs

$./myprogram

7.3 Deployment of the DSL

The DSL‟s library is written in Haskell, which is the base language, and can be packaged as

an installable Haskell library using Cabal (Common Architecture for Building Applications

and Libraries), which comes with the Haskell Platform. This package can be compressed in a

gzipped tarball (.tar.gz) and uploaded on the web or community-repositories such as

Hackage. A user need only download this file, extract the contents and setup the library like

any other Haskell package, using the Setup.hs file. In addition, the Bash and sed scripts for

Preprocessor can be downloaded and placed in a directory. Simply adding this directory to

the OS‟s path and modifying the access privileges to add permissions for execution would

allow completed use of the DSL.

Mathematical Programming Language Page 32

8. IMPLEMENTATION AND RESULTS

This section describes modules from the DSL‟s library, including declaration of these

modules and a few sample functions with results for every module. In addition, this section

also contains details of applications developed using the DSL.

8.1 Mathematical Logic

The module for mathematical logic contains the following declaration for exporting functions

to users‟ programs:

module MPL.Logic.Logic

(

 and',

 or',

 xor,

 xnor,

 nand,

 nor,

 equals,

 implies,

 (/\),

 (\/),

 (==>),

 (<=>),

 notL,

 andL,

 orL,

 xorL,

 xnorL,

 nandL,

 norL

)

where

Here, MPL.Logic.Logic is the module‟s name, indicating that the file is stored in the

directory MPL/Logic and is named Logic.hs. This declaration is followed by definitions for

each of the functions mentioned.

For example, consider the definition of the function for logical implication:

implies :: Bool -> Bool -> Bool

implies a b

 | (a == True)&&(b == False) = False

 | otherwise = True

Mathematical Programming Language Page 33

In accordance with the objective of creating a notation close to the one actually used in

discrete mathematics, an operator for logical implication is defined as follows:

(==>) :: Bool -> Bool -> Bool

a ==> b = implies a b

This provides syntactic sugar and improves readability. Now, the function for logical

implication may be called by the user in any of the following three ways, all giving the same

result - False:

implies True False

True `implies` False

True ==> False

As mentioned in 7.1.1, this module also defines functions which work on a list of Boolean

values. The difference between the names of these functions and those of unary or binary

functions is that they contain an additional „L‟ as suffix, indicating that they operate on lists.

A common operation is to find the XOR (Exclusive OR) of a list of values. Since the module

already contains a function for finding the XOR of two values, it can be used to XOR the

result of XOR of two values with the next value. Repeating this process for the length of the

list gives a single final Boolean value. Such functions for lists of Boolean values are

implemented using Haskell‟s foldl1 function. The xorL function is defined as:

xorL :: [Bool] -> Bool

xorL a = foldl1 (xor) a

Here, a represents a list of Bool. An example of this function‟s usage is:

xorL [True, False, True, True, False]

This returns the Bool value True. The results of invoked functions and sample usage of

operators are shown in Fig. 6.

8.2 Set Theory

Under set theory, the library contains modules for working on Sets and Relations.

8.2.1 Sets

The module for Sets is declared as:

module MPL.SetTheory.Set

(

 Set(..),

 set2list,

Mathematical Programming Language Page 34

 union, unionL,

 intersection,

intersectionL,

 difference,

 isMemberOf,

 cardinality,

 isNullSet,

 isSubset,

 isSuperset,

 powerSet,

 cartProduct,

 disjoint,

disjointL,

 sMap

)

where

The function union is defined as:

union :: Ord a => Set a -> Set a -> Set a

union (Set set1) (Set set2)

 = Set $ (sort . nub) (set1 ++ [e | e <- set2, not (elem e

set1)])

This is based on the definition that the union of two sets is the set containing all elements

from that first set, and all elements from the second set that are not in the first. In addition,

duplicates from this set are removed and this resultant set is sorted. If this function is called

as union (Set {2,4,6}) (Set {1,2,3}), the output would be the set

{1,2,3,4,6}.

A common set operation is that of finding the Cartesian product of two sets. In the library

module, it is defined as:

cartProduct :: Ord a => Set a -> Set a -> [(a,a)]

cartProduct (Set set1) (Set set2)

= Set [(x,y) | x <- set1', y <- set2']

 where

set1' = (sort . nub) set1

 set2' = (sort . nub) set2

This function may be called as cartProduct (Set {1,2}) (Set {3,4}) to

produce the result as the set {(1,3),(1,4),(2,3),(2,4)}.

In several conditions, it is requires to check if two sets are disjoint. For this, the module

contains the function disjoint, and it is defined as:

disjoint :: Ord a => Set a -> Set a -> Bool

disjoint (Set s1) (Set s2) = isNullSet $ intersection (Set s1)

(Set s2)

Mathematical Programming Language Page 35

If a user were to invoke this function as disjoint (Set {1,3..10}) (Set

{2,4..10}), then he/she would get back True as the output. These results are shown in

Fig. 7.

8.2.2 Relations

The module for Relations is declared as:

module MPL.SetTheory.Relation

(

 Relation(..),

 relation2list,

 getFirst,

 getSecond,

 elemSet,

 returnFirstElems,

 returnSecondElems,

 isReflexive,

 isIrreflexive,

 isSymmetric,

 isAsymmetric,

 isAntiSymmetric,

 isTransitive,

 rUnion,

 rUnionL,

 rIntersection,

 rIntersectionL,

 rDifference,

 rComposite,

 rPower,

 reflClosure,

 symmClosure,

 tranClosure,

 isEquivalent,

 isWeakPartialOrder,

 isWeakTotalOrder,

 isStrictPartialOrder,

 isStrictTotalOrder

)

where

Consider the definition for the isTransitive function:

isTransitive :: Eq a => Relation a -> Bool

isTransitive (Relation r)

= andL [(a,c) `elem` r | a <- elemSet r, b <- elemSet r, c <-

elemSet r, (a,b) `elem` r, (b,c) `elem` r]

Mathematical Programming Language Page 36

This function may be called by the user as isTransitive (Relation

{(1,1),(1,2),(2,1)}), which would return False. However, the call

isTransitive (Relation {(1,1),(1,2),(2,1),(2,2)}) would return

True. This result is shown in Fig. 8.

The symmClosure function returns symmetric closure of the relation passed to it. It is

defined as:

symmClosure :: Ord a => Relation a -> Relation a

symmClosure (Relation r) = rUnion (Relation r) (rPower

(Relation r) (-1))

This function uses the property that symmetric closure of a relation is the union of that

relation with its inverse. Calling the function as symmClosure (Relation

{(1,1),(1,3)}) would give the result as the relation {(1,1),(1,3),(3,1)}.

8.3 Graph Theory

Under graph theory, the library contains modules for Graphs and Trees.

8.3.1 Graphs

Declaration for the module on graphs is:

module MPL.GraphTheory.Graph

(

 Vertices(..),

 vertices2list,

 Edges(..),

 edges2list,

 Graph(..),

 GraphMatrix(..),

 graph2matrix,

 getVerticesG,

 getVerticesGM,

 numVerticesG,

 numVerticesGM,

 getEdgesG,

 getEdgesGM,

 numEdgesG,

 numEdgesGM,

 convertGM2G,

 convertG2GM,

 gTransposeG,

 gTransposeGM,

 isUndirectedG,

Mathematical Programming Language Page 37

 isUndirectedGM,

 isDirectedG,

 isDirectedGM,

 unionG,

 unionGM,

 addVerticesG,

 addVerticesGM,

 verticesInEdges,

 addEdgesG,

 addEdgesGM,

 areConnectedGM,

 numPathsBetweenGM,

 adjacentNodesG,

 adjacentNodesGM,

 inDegreeG,

 inDegreeGM,

 outDegreeG,

 outDegreeGM,

 degreeG,

 degreeGM,

 hasEulerCircuitG,

 hasEulerCircuitGM,

 hasEulerPathG,

 hasEulerPathGM,

 hasHamiltonianCircuitG,

 hasHamiltonianCircuitGM,

 countOddDegreeV,

 countEvenDegreeV,

 hasEulerPathNotCircuitG,

 hasEulerPathNotCircuitGM,

 isSubgraphG,

 isSubgraphGM

)

where

As stated in section 7.1.3, the module contains functions which work on graphs defined both

formally and as matrices. Functions for the former have „G‟ as suffix, while functions for the

latter have „GM‟ as suffix. The implementation of functions for both is made possible by the

functions convertG2GM and convertGM2G, which convert between the formal and

matrix representations.

Consider the function for determining if a graph is undirected:

isUndirectedGM :: Ord a => GraphMatrix a -> Bool

isUndirectedGM (GraphMatrix gm)

= (GraphMatrix gm) == gTransposeGM (GraphMatrix gm)

When called as isUndirectedGM (GraphMatrix [[0,5],[5,0]]), True is

returned. The invocation of functions for graphs is shown in Fig. 9.

Mathematical Programming Language Page 38

Using the property of that a graph has an Euler circuit only if all vertices have even degree,

the function hasEulerCircuitG is defined as:

hasEulerCircuitG :: Ord a => Graph a -> Bool

hasEulerCircuitG (Graph g)

= and [even $ (degreeG (Graph g) (Vertices [v])) | v <-

vertices2list $ getVerticesG (Graph g)]

Thus, an invocation such as hasEulerCircuitG (Graph (Vertices {1,2},

Edges {(1,2,4),(2,1,3)})) would result in a return of True.

8.3.2 Trees

The module for trees has the following declaration:

module MPL.GraphTheory.Tree

(

 BinTree(..),

 inorder,

 preorder,

 postorder,

 singleton,

 treeInsert,

 treeSearch,

 reflect,

 height,

 depth,

 size,

 isBalanced

)

where

The functions inorder, preorder and postorder are functions for tree traversal. The

definition for preorder is:

preorder :: BinTree a -> [a]

preorder Leaf = []

preorder (Node x t1 t2) = [x] ++ preorder t1 ++ preorder t2

If we consider the following BinTree:

tree =

 Node 4

 (Node 2

 (Node 1 Leaf Leaf)

 (Node 3 Leaf Leaf))

 (Node 7

 (Node 5

 Leaf

Mathematical Programming Language Page 39

 (Node 6 Leaf Leaf))

 (Node 8 Leaf Leaf))

Then the function call, preorder tree, would generate the result [4,2,1,3,7,5,6,8].

In essence, the BinTree data type is a Binary Search Tree. The function treeSearch, is

an implementation of the Binary Search algorithm and has the following definition:

treeElem :: Ord a => a -> BinTree a -> Bool

treeElem x Leaf = False

treeElem x (Node a left right)

 | x == a = True

 | x < a = treeElem x left

 | x > a = treeElem x right

The function isBalanced recursively checks if the height of all nodes at the same level are

equal. The definition of this function makes use of the height function and is as follows:

isBalanced :: BinTree a -> Bool

isBalanced Leaf = True

isBalanced (Node x t1 t2) = isBalanced t1 && isBalanced t2 &&

(height t1 == height t2)

If this function is applied on tree as isBalanced tree, the output would be False. The

results of functions for Trees are shown in Fig. 10.

8.4 Number Theory

Under number theory, the library contains the following modules:

4.4.1 Base/Radix Manipulation

This module has the description:

module MPL.NumberTheory.Base

(

 toBase,

 fromBase,

 toAlphaDigits,

 fromAlphaDigits

)

where

The function toBase converts a decimal number into the equivalent form of a specified

base/radix. It has the definition:

Mathematical Programming Language Page 40

toBase :: Int -> Int -> [Int]

toBase base v = toBase' [] v

where

 toBase' a 0 = a

 toBase' a v = toBase' (r:a) q

where

(q,r) = v `divMod` base

When invoked as toBase 8 37 or as 37 `toBase` 8, the result would be [4,5],

which is read as 45, octal for 37. The result of toBase is also shown in Fig. 11.

4.4.2 Fibonacci Series

The module on Fibonacci series contains two functions, fib and fibSeries. The function

fib takes an integer as parameter and returns the term at that index in the Fibonacci series. It

is defined as:

fib n = round $ phi ** fromIntegral n / sq5

 where

 sq5 = sqrt 5 :: Double

 phi = (1 + sq5) / 2

If called as fib 10, the output is 55.

The fibSeries function takes an integer as parameter and returns the Fibonacci series as

a list of integers. The definition is:

fibSeries n = [fib i | i <- [1..n]]

If a user wants to obtain the first 10 numbers in the Fibonacci series, he/she has to call the

function as fibSeries 10, which gives the result [1,1,2,3,5,8,13,21,34,55].

The sample usage of functions from this module is shown is Fig. 12.

4.4.3 Modular Arithmetic

This module has the description:

module MPL.NumberTheory.Modular

(

 modAdd,

 modSub,

 modMult,

 modExp,

 isCongruent,

 findCongruentPair,

 findCongruentPair1

Mathematical Programming Language Page 41

)

where

The modExp function is the function for modular exponentiation. It takes the numbers a, b

and m as parameters and computes the value of ab mod m. The definition is:

modExp a b m = modexp' 1 a b

 where

 modexp' p _ 0 = p

 modexp' p x b =

 if even b

 then modexp' p (mod (x*x) m) (div b 2)

 else modexp' (mod (p*x) m) x (pred b)

If invoked as modExp 112 34 546, the integer 532 is returned. The sample usage of

functions defined in this module is shown in Fig. 13.

4.4.4 Prime Numbers

This module has the following description:

module MPL.NumberTheory.Primes

(

 primesTo,

 primesBetween,

 firstNPrimes,

 isPrime,

 nextPrime,

 primeFactors

)

where

The function primesTo generates all prime numbers less than or equal to the number

passed as parameter, using the Sieve of Eratosthenes. Its definition is:

primesTo :: Integer -> [Integer]

primesTo 0 = []

primesTo 1 = []

primesTo 2 = [2]

primesTo m = 2 : sieve [3,5..m]

The invocation primesTo 20 produces the output as [2,3,5,7,11,13,17,19]. The

usage of this function, as well as of the other functions from this module is shown in Fig. 14.

Mathematical Programming Language Page 42

8.5 Linear Algebra

Under linear algebra, the library has modules for Matrices and Vectors.

4.5.1 Matrices

The module for matrices has the following description:

module MPL.LinearAlgebra.Matrix

(

 Matrix(..),

 mAdd,

 mAddL,

 (|+|),

 mSub,

 (|-|),

 mTranspose,

 mScalarMult,

 (|*|),

 mMult,

 mMultL,

 (|><|),

 numRows,

 numCols,

 mat2list,

 determinant,

 inverse,

 mDiv,

 (|/|),

 extractRow,

 extractCol,

 extractRowRange,

 extractColRange,

 mPower,

 trace,

 isInvertible,

 isSymmetric,

 isSkewSymmetric,

 isRow,

 isColumn,

 isSquare,

 isOrthogonal,

 isInvolutory,

 isZeroOne,

 isZero,

 isOne,

 isUnit,

 zero,

zero’,

one,

one’,

Mathematical Programming Language Page 43

unit,

 mMap

)

where

The mMult function performs multiplication of two matrices and returns the resultant matrix.

Its definition is:

mMult :: Num a => Matrix a -> Matrix a -> Matrix a

mMult (Matrix m1) (Matrix m2) = Matrix $ [map (multRow r) m2t

| r <- m1]

 where

 (Matrix m2t) = mTranspose (Matrix m2)

 multRow r1 r2 = sum $ zipWith (*) r1 r2

To add syntactic sugar, the module provides the operator |><| for multiplying two matrices.

Thus, if a user wishes to multiply a Matrix, m1, which is defined as Matrix

[[1,0],[0,1]] and a Matrix, m2, which is defined as Matrix [[4.5,8],[(-

10),6]], he/she can call either mMult m1 m2 or m1 |><| m2, to get the output as

Matrix [[4.5,8.0],[(-10.0),6.0]]. The usage and result is shown in Fig. 15.

Another common operation is to find inverse of a matrix. In this module, the function

inverse is defined using the functions cofactorM and determinant as:

inverse (Matrix m) = Matrix $ map (map (* recip det)) $

mat2list $ cofactorM (Matrix m)

 where

 det = determinant (Matrix m)

If called as inverse (Matrix [[1,1],[1,(-1)]]), the result is Matrix

[[0.5,0.5],[0.5,(-0.5)]].

The module contains several functions to check for properties of a matrix. One of these is

isOrthogonal, which is to check if a matrix is orthogonal. Using the functions

mTranspose and inverse it is easily defined as:

isOrthogonal (Matrix m) = (mTranspose (Matrix m) == inverse

(Matrix m))

When it is used as isOrthogonal (Matrix [[1,1],[1.2,(-1.5)]]), the output

is False.

4.5.2 Vectors

This module‟s description is:

module MPL.LinearAlgebra.Vector

Mathematical Programming Language Page 44

(

 Vector(..),

 vDim,

 vMag,

 vec2list,

 vAdd,

 vAddL,

 (<+>),

 vSub,

 vSubL,

 (<->),

 innerProd,

 (<.>),

 vAngle,

 scalarMult,

 (<*>),

 isNullVector,

 crossProd,

 (><),

 scalarTripleProd,

 vectorTripleProd,

 extract,

 extractRange,

 areOrthogonal,

 vMap,

 vNorm

)

where

The vAngle function returns the angle between two Vectors. It has the definition:

vAngle :: Floating a => Vector a -> Vector a -> a

vAngle (Vector []) (Vector []) = 0

vAngle (Vector v1) (Vector v2) = acos ((innerProd (Vector v1)

(Vector v2)) / ((vMag (Vector v1)) * (vMag (Vector v2)))

As shown in Fig. 16, when invoked as vAngle (Vector [1,1,1]) (Vector

[0,1,0]), the result is 0.9553166181245092 (radians).

The function scalarTripleProduct is based on the functions innerProduct and

crossProduct. It is defined as:

scalarTripleProd a b c = innerProd a (crossProd b c)

To normalize a Vector, the vNorm function can be used. It has the definition:

vNorm (Vector v) = scalarMult (1/(vMag (Vector v))) (Vector v)

If called as vNorm (Vector [1,2,3]), the output is the Vector

<0.2672612419124244, 0.5345224838248488, 0.8017837257372732>

Mathematical Programming Language Page 45

8.6 Combinatorics

This module has the description:

module MPL.Combinatorics.Combinatorics

(

 factorial,

 c,

 p,

 permutation,

 shuffle,

 combination

)

where

The function definition for factorial is:

factorial :: Integer -> Integer

factorial n

 | (n == 0) = 1

 | (n > 0) = product [1..n]

 | (n < 0) = error "Usage - factorial n, where 'n' is non-

negative."

This function can return arbitrarily large integers since its return type is Integer. When

factorial 5 is called, the result 120 is returned.

The factorial function acts as a base for other functions in the module. For example, the

function p returns the number of possible permutations of r objects from a set of n given by

nPr. It is defined as:

p :: Integer -> Integer -> Integer

p n r = div (factorial a) (factorial (a-b))

 where

 a = max n r

 b = min n r

When this function is called as p 10 5 or 10 `p` 5, 30240 is the output. Usage of

functions of this module is shown in Fig. 17.

8.7 Applications

This section contains descriptions of the applications developed using the Mathematical

Programming Language as a DSL for discrete mathematics. These include ciphers such as

those of Caesar and Transposition, RSA encryption and decryption system, implementation

of the Diffie-Hellman Key Exchange Protocol, solution to simultaneous linear equations and

Mersenne prime numbers.

Mathematical Programming Language Page 46

8.7.1 Caesar Cipher

The Caesar Cipher is based on the concept of enciphering by replacing each character of a

string by the character three positions to its right in the alphabet. The process of deciphering

is the reverse of enciphering, i.e. replacing each character by the character three positions to

its left in the alphabet. The implementation of this cipher in the DSL is shown in Fig. 18.

8.7.2 Transposition Cipher

Enciphering of a text by Transposition Cipher involves changing the relative positions of the

characters forming the text. The result after enciphering appears as the jumbled string,

containing the same characters as the plain text. The working of this cipher‟s implementation

in the DSL is shown in Fig. 19.

8.7.3 RSA Encryption and Decryption

Using the library modules MPL.NumberTheory.Primes, MPL.NumberTheory.Modular and

MPL.NumberTheory.Base of the Mathematical Programming Language, the RSA system for

encryption and decryption was easily implemented. For implementation, the RSA algorithm

was followed. This was extended to a menu-driven program, the results of which can be seen

in Fig. 20 and Fig. 21.

8.7.4 Diffie-Hellman Key Exchange

The Diffie-Hellman Key Exchange protocol was implemented in the DSL using the library

modules of MPL.NumberTheory.Modular, MPL.NumberTheory.Primes and

MPL.NumberTheory.Base. This algorithm involves selecting common primitive root and

prime number, and then generation of a shared key by a party using the other‟s public key

and its own private key. This algorithm‟s implementation is the DSL is shown in Fig. 22.

8.7.5 Simultaneous Linear Equation

The solution to simultaneous linear equations can be found very easily by using the extensive

functionality of the module on matrices in the DSL‟s library. The command line usage is

shown in Fig. 23. The usage of the DSL program in Eclipse is shown in Fig. 24. The program

is:

import MPL.LinearAlgebra.Matrix

solveEqns (Matrix coeff) (Matrix const) = (inverse (Matrix

coeff)) |><| (Matrix const)

8.7.6 Mersenne Prime Numbers

Mersenne Prime Numbers are prime numbers of the form 2
q
 – 1, where q is also a prime

number. Since the DSL‟s library on prime numbers, MPL.NumberTheory.Primes, provides

efficient ways to deal with prime numbers, the finding of even large Mersenne prime

numbers is a cinch. The results are shown in Fig. 25.

Mathematical Programming Language Page 47

9. SCREENSHOTS

9.1 Mathematical Logic

9.2 Set Theory

9.2.1 Sets

9.2.2 Relations

Fig. 8. Functions for Relations in GHCi

Fig. 7. Functions for Sets in GHCi

Fig. 6. Functions for Mathematical Logic in GHCi

Mathematical Programming Language Page 48

9.3 Graph Theory

9.3.1 Graphs

9.3.2 Trees

9.4 Number Theory

9.4.1 Base Manipulation

Fig. 11. Functions for Base Manipulation in GHCi

Fig. 10. Functions for Trees in GHCi

Fig. 9. Functions for Graphs in GHCi

Mathematical Programming Language Page 49

9.4.2 Fibonacci Sequence

9.4.3 Modular Arithmetic

9.4.4 Prime Numbers

Fig. 14. Functions for Prime Numbers in GHCi

Fig. 13. Functions for Modular Arithmetic in GHCi

Fig. 12. Functions for Fibonacci Sequence in GHCi

Mathematical Programming Language Page 50

9.5 Linear Algebra

9.5.1 Matrices

9.5.2 Vectors

Fig. 16. Functions for Vectors in GHCi

Fig. 15. Functions for Matrices in GHCi

Mathematical Programming Language Page 51

9.6 Combinatorics

9.7 Applications

9.7.1 Caesar Cipher

Fig. 18. Enciphering using Caesar Cipher

Fig. 17. Functions for Combinatorics in GHCi

Mathematical Programming Language Page 52

9.7.2 Transposition Cipher

9.7.3 RSA Encryption and Decryption

Fig. 20. Encryption using RSA

Fig. 19. Deciphering using Transposition Cipher

Mathematical Programming Language Page 53

9.7.4 Diffie-Hellman Key Exchange Protocol

Fig. 22. Diffie-Hellman Key Exchange Protocol

Fig. 21. Decryption using RSA

Mathematical Programming Language Page 54

9.7.5 Simultaneous Linear Equations

Fig. 24. Solution to Simultaneous Linear Equations in Eclipse

Fig. 23. Solution to Simultaneous Linear Equations

Mathematical Programming Language Page 55

9.7.6 Mersenne Prime Numbers

Fig. 26. List of Mersenne Prime Numbers up to 2

100
-1

Fig. 25. List of Mersenne Prime Numbers’ powers up to 1000

Mathematical Programming Language Page 56

10. CONCLUSION AND FUTURE SCOPE

The Mathematical Programming Language has been successfully implemented as a

Preprocessed Domain-Specific Language (DSL) for Discrete Mathematics.

The DSL contains two major components – a library and the preprocessor. Haskell is the base

language for the library and the preprocessor translates the DSL programs into equivalent

Haskell programs, which are then compiled by GHC after importing the required library

modules.This DSL is available as an installable package for all platforms on which Haskell is

supported.

Since discrete mathematics is a vast area of study, it is not possible to include all topics in the

library during the initial stages of development. In the future, modules for group theory,

information theory, geometry, topology and theoretical computer science can be added.

Additionally, the preprocessor can be constantly updated to handle new modules and new

features in existing ones. Apart from this, based on feedback and suggestions from users, the

syntax of this DSL can be improved to suit their needs.

Mathematical Programming Language Page 57

11. REFERENCES

[1] A. Raja, D. Lakshmanan, “Domain Specific Languages”, International

JournalofComputer Applications, vol 1, no. 21, 2010.

[2] W. Taha, “Domain Specific Languages”, IEEE International Conference on Computer

Engineering and Systems (ICESS), 2008.

[3] D. Ghosh, “Part 1: Introducing Domain Specific Languages”, in DSLs in Action,

Manning Publication Co., 2011, ch. 1, sec. 5, pp. 17-20.

[4] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Volkel, "Design

Guidelines for Domain Specific Languages", Proc. DSM 2009, 2009.

[5] M.Mernik, J.Heering, A. M. Sloane, “When and How to Develop Domain-Specific

Languages”, ACM Computing Surveys (CSUR), 2005.

[6] M. Fowler, “Domain-Specific Languages”, Addison-Wesley Professional, 2010.

[7] J. Hughes, "Why Functional Programming Matters", The Computer Journal, 1989.

[8] B. Goldberg, “Functional Programming Languages”, ACM Computing Surveys, Vol.

28, No. 1, March 1996.

[9] P. Hudak, "Building domain-specific embedded languages", ACM Computing

Surveys, December 1996.

Mathematical Programming Language Page 58

12. APPENDIX

12.1 DSL Library Modules

12.1.1 Mathematical Logic

The Haskell code for this module is:

module MPL.Logic.Logic

(

 and',

 or',

 xor,

 xnor,

 nand,

 nor,

 equals,

 implies,

 (/\),

 (\/),

 (==>),

 (<=>),

 notL,

 andL,

 orL,

 xorL,

 xnorL,

 nandL,

 norL

)

where

-- Binary XOR Function

xor :: Bool -> Bool -> Bool

xor a b

 | a == b = False

 | otherwise = True

-- Binary XNOR Funtion

xnor :: Bool -> Bool -> Bool

xnor a b = not (xor a b)

-- Binary NAND Function

nand :: Bool -> Bool -> Bool

nand a b = not (a && b)

-- Binary NOR Function

nor :: Bool -> Bool -> Bool

nor a b = not (a || b)

-- Binary Logical Equality

equals :: Bool -> Bool -> Bool

Mathematical Programming Language Page 59

equals a b = a == b

-- Binary Logical Implication

implies :: Bool -> Bool -> Bool

implies a b

 | (a == True) && (b == False) = False

 | otherwise = True

-- Binary and Operator

(/\) :: Bool -> Bool -> Bool

a /\ b = a && b

-- Binary or Operator

(\/) :: Bool -> Bool -> Bool

a \/ b = a || b

-- Binary implication Operator

(==>) :: Bool -> Bool -> Bool

a ==> b = implies a b

-- Binary equality Operator

(<=>) :: Bool -> Bool -> Bool

a <=> b = a == b

-- unary not Operator on a list of Bool

notL :: [Bool] -> [Bool]

notL a = map not a

-- Binary and Operator on a list of Bool

andL :: [Bool] -> Bool

andL a = foldl1 (&&) a

-- Binary or Operator on a list of Bool

orL :: [Bool] -> Bool

orL a = foldl1 (||) a

-- Binary xor Operator on a list of Bool

xorL :: [Bool] -> Bool

xorL a = foldl1 (xor) a

-- Binary nand Operator on a list of Bool

nandL :: [Bool] -> Bool

nandL a = foldl1 (nand) a

-- Binary nor Operator on a list of Bool

Mathematical Programming Language Page 60

norL :: [Bool] -> Bool

norL a = foldl1 (nor) a

-- Binary xnor Operator on a list of Bool

xnorL :: [Bool] -> Bool

xnorL a = foldl1 (xnor) a

12.1.2 Sets

The Haskell code for this module is:

module MPL.SetTheory.Set

(

 Set(..),

 set2list,

 union,

 unionL,

 intersection,

 intersectionL,

 difference,

 isMemberOf,

 cardinality,

 isNullSet,

 isSubset,

 isSuperset,

 powerSet,

 cartProduct,

 disjoint,

 disjointL,

 natural,

 natural',

 whole,

 whole',

 sMap

)

where

-- Union of Sets

union :: Ord a => Set a -> Set a -> Set a

union (Set set1) (Set set2)

 = Set ((L.sort . L.nub) (set1 ++ [e | e <- set2, not (elem e

set1)]))

-- Union of a list of Sets

unionL :: Ord a => [Set a] -> Set a

unionL s = foldl1 (union) s

-- Intersection of Sets

intersection :: Ord a => Set a -> Set a -> Set a

intersection (Set set1) (Set set2)

 = Set ((L.sort . L.nub) [e | e <- set1, (elem e set2)])

Mathematical Programming Language Page 61

-- Intersection of a list of Sets

intersectionL :: Ord a => [Set a] -> Set a

intersectionL s = foldl1 (intersection) s

-- Set difference

difference :: Ord a => Set a -> Set a -> Set a

difference (Set set1) (Set set2)

 = Set ((L.sort . L.nub) [e | e <- set1, not (elem e set2)])

-- Membership

isMemberOf :: Eq a => Element a -> Set a -> Bool

isMemberOf a (Set []) = False

isMemberOf a (Set set) = a `elem` set

-- Cardinality

cardinality :: Eq a => Set a -> Int

cardinality (Set set) = (L.length . L.nub) set

-- Empty/Null Set verification

isNullSet :: Eq a => Set a -> Bool

isNullSet (Set set)

 | cardinality (Set set) == 0 = True

 | otherwise = False

-- Subset verification

isSubset :: Ord a => Set a -> Set a -> Bool

isSubset (Set set1) (Set set2) = null [e | e <- set1', not (elem e

set2')]

 where set1' = (L.sort . L.nub) set1

 set2' = (L.sort . L.nub) set2

-- Superset verification

isSuperset :: Ord a => Set a -> Set a -> Bool

isSuperset (Set set1) (Set set2) = null [e | e <- set2', not (elem e

set1')]

 where set1' = (L.sort . L.nub) set1

 set2' = (L.sort . L.nub) set2

-- Power set

powerSet :: Ord a => Set a -> Set (Set a)

powerSet (Set s) = Set $ map (\xs -> (Set xs)) (L.subsequences $

set2list (Set s))

powerSet' :: Ord a => Set a -> Set (Set a)

powerSet' (Set xs) = Set $ L.sort (map (\xs -> (Set xs)) (powerList

xs))

Mathematical Programming Language Page 62

powerList :: Ord a => [a] -> [[a]]

--powerList :: [a] -> [[a]]

powerList [] = [[]]

powerList (x:xs) = L.sort $ (powerList xs) ++ (map (x:) (powerList

xs))

-- Cartesian product

cartProduct :: Ord a => Set a -> Set a -> [(Element a,Element a)]

cartProduct (Set set1) (Set set2) = [(x,y) | x <- set1', y <- set2']

 where set1' = (L.sort . L.nub) set1

 set2' = (L.sort . L.nub) set2

-- Checking if two sets are disjoint

disjoint :: Ord a => Set a -> Set a -> Bool

disjoint (Set set1) (Set set2) = isNullSet $ intersection (Set set1)

(Set set2)

-- Checking if all Sets in a list are disjoint

disjointL :: Ord a => [Set a] -> Bool

disjointL s = isNullSet $ intersectionL s

-- Set of natural numbers

natural = [1,2..]

-- Set of natural numbers upto n

natural' n = [1,2..n]

-- Set of whole numbers

whole = [0,1..]

-- Set of whole numbers upto n

whole' n = [0,1..n]

-- Mapping a function to a Set

sMap f (Set s) = list2set $ map f s

12.1.3 Relations

module MPL.SetTheory.Relation

(

 Relation(..),

 relation2list,

 getFirst,

 getSecond,

 elemSet,

Mathematical Programming Language Page 63

 returnFirstElems,

 returnSecondElems,

 isReflexive,

 isIrreflexive,

 isSymmetric,

 isAsymmetric,

 isAntiSymmetric,

 isTransitive,

 rUnion,

 rUnionL,

 rIntersection,

 rIntersectionL,

 rDifference,

 rComposite,

 rPower,

 reflClosure,

 symmClosure,

 tranClosure,

 isEquivalent,

 isWeakPartialOrder,

 isWeakTotalOrder,

 isStrictPartialOrder,

 isStrictTotalOrder

)

where

import qualified Data.List as L

-- Relation data type

newtype Relation a = Relation [(a,a)] deriving (Eq)

instance (Show a) => Show (Relation a) where

 showsPrec _ (Relation s) str = showRelation s str

showRelation [] str = showString "{}" str

showRelation (x:xs) str = showChar '{' (shows x (showl xs str))

 where

 showl [] str = showChar '}' str

 showl (x:xs) str = showChar ',' (shows x (showl xs str))

-- Converting a relation to list

relation2list (Relation r) = r

elemSet r = L.union (getFirst (Relation r)) (getSecond (Relation r))

-- Returns list of all 'a' where (a,b) <- Relation

getFirst (Relation r) = L.nub [fst x | x <- r]

-- Returns list of all 'b' where (a,b) <- Relation

getSecond (Relation r) = L.nub [snd x | x <- r]

Mathematical Programming Language Page 64

-- Returns list of all 'a' where (a,b) <- Relation and 'b' is

specified

returnFirstElems (Relation r) x = L.nub [fst (a,x) | a <- getFirst

(Relation r), (a,x) `elem` r]

-- Returns list of all 'b' where (a,b) <- Relation and 'a' is

specified

returnSecondElems (Relation r) x = L.nub [snd (x,b) | b <- getSecond

(Relation r), (x,b) `elem` r]

-- Checks if a relation is reflexive or not

isReflexive (Relation r) = and [(a,a) `elem` r | a <- elemSet r]

isIrreflexive (Relation r) = not $ isReflexive (Relation r)

-- Checks if a relation is symmetric or not

isSymmetric (Relation r) = and [((b,a) `elem` r) | a <- elemSet r, b

<- elemSet r, (a,b) `elem` r]

-- Checks if a relation is asymmetric or not

isAsymmetric (Relation r) = and [not ((b,a) `elem` r) | a <- elemSet

r, b <- elemSet r, (a,b) `elem` r]

isAntiSymmetric (Relation r) = and [a==b | a <- elemSet r, b <-

elemSet r, (a,b) `elem` r, (b,a) `elem` r]

-- Checks if a relation is transitive or not

isTransitive (Relation r) = and [(a,c) `elem` r | a <- elemSet r, b

<- elemSet r, c <- elemSet r, (a,b) `elem` r, (b,c) `elem` r]

-- Returns union of two relations

rUnion (Relation r1) (Relation r2) = Relation ((L.sort . L.nub) (r1

++ [e | e <- r2, not (elem e r1)]))

-- Returns union of list of relations

rUnionL r = foldl1 (rUnion) r

-- Returns intersection of two relations

rIntersection (Relation r1) (Relation r2) = Relation ((L.sort .

L.nub) [e | e <- r1, (elem e r2)])

Mathematical Programming Language Page 65

-- Returns intersection of a list of relations

rIntersectionL r = foldl1 (rIntersection) r

-- Returns difference of two relations

rDifference (Relation r1) (Relation r2) = Relation ((L.sort . L.nub)

[e | e <- r1, not (elem e r2)])

-- Returns composite of two relations

rComposite (Relation r1) (Relation r2) = Relation $ L.nub [(a,c) | a

<- elemSet r1, b <- elemSet r1, b <- elemSet r2, c <- elemSet r2,

(a,b) `elem` r1, (b,c) `elem` r2]

-- Returns power of a relation

rPower (Relation r) pow =

 if (pow == (-1))

 then Relation [(b,a) | (a,b) <- r]

 else

 if (pow == 1)

 then (Relation r)

 else rComposite (rPower (Relation r) (pow-1)) (Relation

r)

-- Reflexive closure

reflClosure (Relation r) = rUnion (Relation r) (delta (Relation r))

 where

 delta (Relation r) = Relation [(a,b) | a <- elemSet r, b

<- elemSet r, a == b]

-- Symmetric closure

symmClosure (Relation r) = rUnion (Relation r) (rPower (Relation r)

(-1))

-- Transitive closure

tranClosure (Relation r) = foldl1 (rUnion) [(rPower (Relation r) n)

| n <- [1 .. length (elemSet r)]]

isEquivalent (Relation r) = isReflexive (Relation r) && isSymmetric

(Relation r) && isTransitive (Relation r)

isWeakPartialOrder (Relation r) = isReflexive (Relation r) &&

isAntiSymmetric (Relation r) && isTransitive (Relation r)

isWeakTotalOrder (Relation r) = isWeakPartialOrder (Relation r) &&

(and [((a,b) `elem` r) || ((b,a) `elem` r) | a <- elemSet r, b <-

elemSet r])

Mathematical Programming Language Page 66

isStrictPartialOrder (Relation r) = isIrreflexive (Relation r) &&

isAsymmetric (Relation r) && isTransitive (Relation r)

isStrictTotalOrder (Relation r) = isStrictPartialOrder (Relation r)

&& (and [((a,b) `elem` r) || ((b,a) `elem` r) || a==b | a <-

elemSet r, b <- elemSet r])

12.1.4 Graphs

module MPL.GraphTheory.Graph

(

 Vertices(..),

 vertices2list,

 Edges(..),

 edges2list,

 first,

 second,

 third,

 Graph(..),

 GraphMatrix(..),

 graph2matrix,

 getVerticesG,

 getVerticesGM,

 numVerticesG,

 numVerticesGM,

 getEdgesG,

 getEdgesGM,

 numEdgesG,

 numEdgesGM,

 convertGM2G,

 convertG2GM,

 gTransposeG,

 gTransposeGM,

 isUndirectedG,

 isUndirectedGM,

 isDirectedG,

 isDirectedGM,

 unionG,

 unionGM,

 addVerticesG,

 addVerticesGM,

 verticesInEdges,

 addEdgesG,

 addEdgesGM,

 areConnectedGM,

 numPathsBetweenGM,

Mathematical Programming Language Page 67

 adjacentNodesG,

 adjacentNodesGM,

 inDegreeG,

 inDegreeGM,

 outDegreeG,

 outDegreeGM,

 degreeG,

 degreeGM,

 hasEulerCircuitG,

 hasEulerCircuitGM,

 hasEulerPathG,

 hasEulerPathGM,

 hasHamiltonianCircuitG,

 hasHamiltonianCircuitGM,

 countOddDegreeV,

 countEvenDegreeV,

 hasEulerPathNotCircuitG,

 hasEulerPathNotCircuitGM,

 isSubgraphG,

 isSubgraphGM

)

where

import qualified Data.List as L

-- Data type for vertices

newtype Vertices a = Vertices [a] deriving (Eq)

instance (Show a) => Show (Vertices a) where

 showsPrec _ (Vertices s) str = showVertices s str

showVertices [] str = showString "{}" str

showVertices (x:xs) str = showChar '{' (shows x (showl xs str))

 where

 showl [] str = showChar '}' str

 showl (x:xs) str = showChar ',' (shows x (showl xs str))

vertices2list (Vertices v) = v

-- Data types for edges

newtype Edges a = Edges [(a,a,Int)] deriving (Eq)

instance (Show a) => Show (Edges a) where

 showsPrec _ (Edges s) str = showEdges s str

showEdges [] str = showString "{}" str

Mathematical Programming Language Page 68

showEdges (x:xs) str = showChar '{' (shows x (showl xs str))

 where

 showl [] str = showChar '}' str

 showl (x:xs) str = showChar ',' (shows x (showl xs str))

edges2list (Edges a) = a

first (a,b,c) = a

second (a,b,c) = b

third (a,b,c) = c

-- Data type for Graph

newtype Graph a = Graph (Vertices a, Edges a) deriving (Eq, Show)

-- Data type for Graph as matrix

newtype Matrix a = Matrix [[a]] deriving (Eq)

instance Show a => Show (Matrix a) where

 show (Matrix a) = L.intercalate "\n" $ map (L.intercalate "\t"

. map show) a

newtype GraphMatrix a = GraphMatrix [[a]] deriving (Eq)

instance Show a => Show (GraphMatrix a) where

 show (GraphMatrix a) = L.intercalate "\n" $ map (L.intercalate

"\t" . map show) a

graph2matrix (GraphMatrix gm) = gm

-- Get vertices of a Graph

--getVertices :: Num a => Graph a -> Vertices a

getVerticesG (Graph g) = fst g

-- Number of vertices of Graph

--numVertices :: Num a => Graph a -> Integer

numVerticesG (Graph g) = fromIntegral $ length $ vertices2list $

getVerticesG (Graph g)

-- Number of edges of a Graph

numEdgesG (Graph g) = fromIntegral $ length $ edges2list $ getEdgesG

(Graph g)

Mathematical Programming Language Page 69

-- Get edges of a Graph

--getEdges :: Num a => Graph a -> Edges a

getEdgesG (Graph g) = snd g

-- Get vertices of a GraphMatrix

--getVerticesGM :: Num a => GraphMatrix a -> Vertices a

getVerticesGM (GraphMatrix gm) = Vertices [1 .. fromIntegral $

length gm]

-- Get number of vertices of GraphMatrix

numVerticesGM (GraphMatrix gm) = length gm

-- Find weight of edge between nodes i and j

weight (GraphMatrix gm) i j = fromIntegral $ ((graph2matrix

(GraphMatrix gm))!!i)!!j

-- Get edges of a GraphMatrix

--getEdgesGM :: Num a => GraphMatrix a -> Edges a

getEdgesGM (GraphMatrix gm) = Edges [(i+1,j+1,(w i j)) | i <- [0 ..

fromIntegral $ ((length (graph2matrix (GraphMatrix gm)))-1)], j <-

[0 .. fromIntegral $ ((length (graph2matrix

(GraphMatrix gm)))-1)], ((weight (GraphMatrix gm) i j) /= 0)]

 where

 w i j = fromIntegral $ weight (GraphMatrix gm) i j

-- Number of edges in a GraphMatrix

numEdgesGM (GraphMatrix gm) = fromIntegral $ length $ edges2list $

getEdgesGM (GraphMatrix gm)

-- Convert GraphMatrix to Graph

--convertGM2G :: Num a => GraphMatrix a -> Graph a

convertGM2G (GraphMatrix gm) = Graph ((getVerticesGM (GraphMatrix

gm)), (getEdgesGM (GraphMatrix gm)))

-- Convert Graph to adjacency GraphMatrix

--convertG2GM' :: Num a => Graph a -> [a]

getLastVertex (Graph g) = (L.reverse $ L.sort $ vertices2list $

getVerticesG (Graph g)) !! 0

Mathematical Programming Language Page 70

--convertG2GM' (Graph g) = [(f i j) | i <- [1 .. (numVerticesG

(Graph g))], j <- [1 .. (numVerticesG (Graph g))]]

convertG2GM' (Graph g) = [(f i j) | i <- vertices2list $

(getVerticesG (Graph g)), j <- vertices2list $ (getVerticesG (Graph

g))]

 where

 edgeList = [(first e, second e) | e <- edges2list

(getEdgesG (Graph g))]

 f i j =

 if ((i),(j)) `elem` edgeList

 then third (w i j (Graph g))

 else 0

 w i j (Graph g) =

 [(i,j,k) | k <- [0 .. (maxWeight (Graph g))],

(i,j,k) `elem` (edges2list (snd g))] !! 0

 maxWeight (Graph g) = fromIntegral $ ((L.reverse .

L.sort) [third x | x <- edges2list (snd g)]) !! 0

chunk' n = takeWhile (not.null) . map (take n) . iterate (drop n)

convertG2GM (Graph g) = GraphMatrix $ chunk' (numVerticesG (Graph

g)) (convertG2GM' (Graph g))

-- Transpose of a graph (GraphMatrix)

gTransposeGM (GraphMatrix []) = (GraphMatrix [])

gTransposeGM (GraphMatrix [[]]) = (GraphMatrix [[]])

gTransposeGM (GraphMatrix xs) = GraphMatrix $ foldr (zipWith (:))

(repeat []) xs

-- Transpose of a graph (Graph)

gTransposeG (Graph g) = convertGM2G $ gTransposeGM $ (convertG2GM

(Graph g))

-- Checking if a GraphMatrix is undirected

isUndirectedGM (GraphMatrix gm) = (GraphMatrix gm) == gTransposeGM

(GraphMatrix gm)

-- Checking if a Graph is undirected

Mathematical Programming Language Page 71

isUndirectedG (Graph g) = isUndirectedGM (convertG2GM (Graph g))

-- Checking if a GraphMatrix is directed

isDirectedGM (GraphMatrix gm) = not $ isUndirectedGM (GraphMatrix

gm)

-- Checking if a Graph is directed

isDirectedG (Graph g) = isDirectedGM $ (convertG2GM (Graph g))

-- Union of Graphs

unionG (Graph g1) (Graph g2) = Graph (

 Vertices $ L.sort (L.union (vertices2list $ getVerticesG

(Graph g1)) (vertices2list $ getVerticesG (Graph g2))),

 Edges $ L.sort (L.union (edges2list $ getEdgesG (Graph g1))

(edges2list $ getEdgesG (Graph g2)))

)

-- Union of GraphMatrices

unionGM (GraphMatrix gm1) (GraphMatrix gm2) = convertG2GM $ (unionG

(convertGM2G (GraphMatrix gm1)) (convertGM2G (GraphMatrix gm2)))

-- Adding vertices to Graph

addVerticesG (Graph g) (Vertices v) = Graph (

 Vertices (L.union (vertices2list $ getVerticesG (Graph g))

(vertices2list $ Vertices v)),

 getEdgesG (Graph g))

-- Adding vertices to GraphMatrix

addVerticesGM (GraphMatrix gm) (Vertices v) = convertG2GM $

addVerticesG (convertGM2G (GraphMatrix gm)) (Vertices v)

-- Extracting all vertices in Edges

verticesInEdges (Edges e) = L.union (L.nub [first edge | edge <-

edges2list (Edges e)]) (L.nub [second edge | edge <- edges2list

(Edges e)])

-- Adding edges to Graph

addEdgesG (Graph g) (Edges e) =

 if (and [v `elem` vertices2list (getVerticesG (Graph g)) | v

<- (verticesInEdges (Edges e))])

Mathematical Programming Language Page 72

 then Graph (

 getVerticesG (Graph g),

 Edges (L.union (edges2list $ getEdgesG (Graph g)) (edges2list

$ Edges e))

)

 else error "Vertices in the edge(s) are not in the graph's set

of vertices."

-- Adding edges to GraphMatrix

addEdgesGM (GraphMatrix gm) (Edges e) = convertG2GM $ addEdgesG

(convertGM2G (GraphMatrix gm)) (Edges e)

-- Checking if two vertices in GraphMatrix are connected

areConnectedGM (GraphMatrix g) (Vertices v1) (Vertices v2) =

 if ((mat2list' $ (mPower' (Matrix $ graph2matrix (GraphMatrix

g)) (numVerticesGM (GraphMatrix g)))) !! ((v1!!0)-1) !! ((v2!!0))-1)

/= 0

 then True

 else False

-- Finding number of paths between two vertices in a GraphMatrix

numPathsBetweenGM (GraphMatrix g) (Vertices v1) (Vertices v2) =

 (((mat2list' $ (mPower' (Matrix $ graph2matrix (GraphMatrix

g)) (numVerticesGM (GraphMatrix g)))) !! (((vertices2list (Vertices

v1))!!0) - 1)) !! (((vertices2list (Vertices v2))!!0)

- 1))

-- Finding nodes adjacent to a node in a Graph

adjacentNodesG (Graph g) (Vertices v) = Vertices $ L.union [second

x | x <- edges2list $ getEdgesG (Graph g), (first x) == (v!!0)] [

first y | y <- edges2list $ getEdgesG (Graph g),

(second y) == (v!!0)]

-- Finding nodes adjacent to a node in a GraphMatrix

adjacentNodesGM (GraphMatrix gm) (Vertices v) = adjacentNodesG

(convertGM2G (GraphMatrix gm)) (Vertices v)

-- In-degree of a vertex in a directed Graph

inDegreeG (Graph g) (Vertices v) = length $ [first y | y <-

edges2list $ getEdgesG (Graph g), (second y) == (v!!0)]

Mathematical Programming Language Page 73

-- In-degree of a vertex in a directed GraphMatrix

inDegreeGM (GraphMatrix gm) (Vertices v) = inDegreeG (convertGM2G

(GraphMatrix gm)) (Vertices v)

-- Out-degree of a vertex in a directed Graph

outDegreeG (Graph g) (Vertices v) = length $ [second y | y <-

edges2list $ getEdgesG (Graph g), (first y) == (v!!0)]

-- Out-degree of a vertex in a directed GraphMatrix

outDegreeGM (GraphMatrix gm) (Vertices v) = outDegreeG (convertGM2G

(GraphMatrix gm)) (Vertices v)

-- Degree of a vertex in an undirected Graph

degreeG (Graph g) (Vertices v) = (inDegreeG (Graph g) (Vertices v))

+ (outDegreeG (Graph g) (Vertices v))

-- Degree of a vertex in an undirected GraphMatrix

degreeGM (GraphMatrix gm) (Vertices v) = (inDegreeGM (GraphMatrix

gm) (Vertices v)) + (outDegreeGM (GraphMatrix gm) (Vertices v))

-- Finding if a Graph contains a Euler Circuit

hasEulerCircuitG (Graph g) = and [even $ (degreeG (Graph g)

(Vertices [v])) | v <- vertices2list $ getVerticesG (Graph g)]

-- Finding if a GraphMatrix contains a Euler Circuit

hasEulerCircuitGM (GraphMatrix gm) = hasEulerCircuitG (convertGM2G

(GraphMatrix gm))

-- Finding if a Graph contains a Euler Path

hasEulerPathG (Graph g) = hasEulerCircuitG (Graph g)

-- Finding if a GraphMatrix contains a Euler Path

hasEulerPathGM (GraphMatrix gm) = hasEulerCircuitGM (GraphMatrix gm)

-- Finding number of vertices with odd degree

countOddDegreeV (Graph g) = sum [1 | v <- vertices2list $

(getVerticesG (Graph g)), odd $ (degreeG (Graph g) (Vertices [v]))]

Mathematical Programming Language Page 74

-- Finding number of vertices with even degree

countEvenDegreeV (Graph g) = sum [1 | v <- vertices2list $

(getVerticesG (Graph g)), even $ (degreeG (Graph g) (Vertices [v]))

]

-- Finding if a Graph conatains a Euler Path but not a Euler circuit

hasEulerPathNotCircuitG (Graph g) = countOddDegreeV (Graph g) == 2

-- Finding if a GraphMatrix contains a Euler Path but not a Euler

circuit

hasEulerPathNotCircuitGM (GraphMatrix gm) = hasEulerPathNotCircuitG

(convertGM2G (GraphMatrix gm))

-- Finding if a Graph contains a Hamiltonian Circuit

hasHamiltonianCircuitG (Graph g) = and [(degreeG (Graph g) (Vertices

[v])) >= ((numVerticesG (Graph g)) `div` 2) | v <- vertices2list $

getVerticesG (Graph g), (numVerticesG (Graph g)) >= 3]

-- Finding if a GraphMatrix contains a Hamiltonian Circuit

hasHamiltonianCircuitGM (GraphMatrix gm) = hasHamiltonianCircuitG

(convertGM2G (GraphMatrix gm))

-- Checking if a Graph is a subgraph

isSubgraphG (Graph g1) (Graph g2) = (e1 `isSubset` e2) && (v1

`isSubset` v2)

 where

 isSubset set1 set2 = null [e | e <- (L.sort . L.nub)

set1, not (elem e ((L.sort . L.nub) set2))]

 e1 = edges2list $ getEdgesG (Graph g1)

 e2 = edges2list $ getEdgesG (Graph g2)

 v1 = vertices2list $ getVerticesG (Graph g1)

 v2 = vertices2list $ getVerticesG (Graph g2)

-- Checking if a GraphMatrix is a subgraph

isSubgraphGM (GraphMatrix gm1) (GraphMatrix gm2) = isSubgraphG

(convertGM2G $ (GraphMatrix gm1)) (convertGM2G $ (GraphMatrix gm2))

Mathematical Programming Language Page 75

12.1.5 Prime Numbers

module MPL.NumberTheory.Primes

(

 primesTo,

 primesBetween,

 nPrimes,

 primesTo100,

 trialDivision,

 primesTo10000,

 isTrialDivisionPrime,

 isStrongPseudoPrime,

 isMillerRabinPrime,

 isPrime,

 nextPrime,

 primeFactors

)

where

-- internal functions ----------------------

d `divides` n = n `mod` d == 0

n `splitWith` p = doSplitWith 0 n

 where doSplitWith s t

 | p `divides` t = doSplitWith (s+1) (t `div` p)

 | otherwise = (s, t)

power (idG,multG) x n = doPower idG x n

 where

 doPower y _ 0 = y

 doPower y x n =

 let y' = if odd n then (y `multG` x) else y

 x' = x `multG` x

 n' = n `div` 2

 in doPower y' x' n'

minus (x:xs) (y:ys) = case (compare x y) of

 LT -> x : minus xs (y:ys)

 EQ -> minus xs ys

 GT -> minus (x:xs) ys

minus xs _ = xs

primePowerFactors :: Integer -> [(Integer,Int)]

primePowerFactors n | n > 0 = takeOutFactors n primesTo10000

 where

 takeOutFactors n (p:ps)

 | p*p > n = finish n

 | otherwise =

 let (s,n') = n `splitWith` p

Mathematical Programming Language Page 76

 in if s > 0 then (p,s) : takeOutFactors n' ps

else takeOutFactors n ps

 takeOutFactors n [] = finish n

 finish 1 = []

 finish n =

 if n < 100000000 || isMillerRabinPrime n

 then [(n,1)]

 else error ("primePowerFactors: unable to factor "

++ show n)

sieve (p:xs)

 | p*p > (last xs) = p : xs

 | otherwise = p : sieve (xs `minus` [p*p, p*p+2*p..])

--

-- Generate list of primes upto specified limit by using Sieve of

Eratosthenes

primesTo :: Integer -> [Integer]

primesTo 0 = []

primesTo 1 = []

primesTo 2 = [2]

primesTo m = 2 : 3 : sieve [3,5..m]

-- Generate all primes between two numbers (upper limit inclusive)

primesBetween :: Integer -> Integer -> [Integer]

primesBetween m n

 | (m <= 2) = primesTo n

 | otherwise = (primesTo n) `minus` (primesTo m)--(nextPrime m)

: sieve [((nextPrime m)+1) .. n]

-- Generate list of first 'n' primes

nPrimes n = take n (sieve [2..])

 where sieve (p:ns) = p : sieve (filter (notdiv p) ns)

 notdiv p n = n `mod` p /= 0

-- List of prime numbers under 100

primesTo100 :: [Integer]

primesTo100 =

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89

,97]

-- Trial division

trialDivision ps n = doTrialDivision ps

 where doTrialDivision (p:ps) = let (q,r) = n `quotRem` p in if

r == 0 then False else if q < p then True else doTrialDivision ps

 doTrialDivision [] = True

-- List of prime numbers under 10000

Mathematical Programming Language Page 77

primesTo10000 = primesTo100 ++ filter (trialDivision primesTo100)

[101,103..9999]

-- Determine primality using trial division

isTrialDivisionPrime 2 = True

isTrialDivisionPrime n = trialDivision (primesTo10000 ++

[10001,10003..]) n

-- Check if number is a pseudo-prime (probable)

isStrongPseudoPrime :: Integer -> (Int,Integer) -> Integer -> Bool

isStrongPseudoPrime n (s,t) b =

 let b' = power (1, \x y -> x*y `mod` n) b t

 in if b' == 1 then True else doSquaring s b'

 where

 doSquaring 0 x = False

 doSquaring s x

 | x == n-1 = True

 | x == 1 = False

 | otherwise = doSquaring (s-1) (x*x `mod` n)

-- Check if number is prime using Miller-Rabin primality test

isMillerRabinPrime :: Integer -> Bool

isMillerRabinPrime n

 | n < 100 = n `elem` primesTo100

 | otherwise = all (isStrongPseudoPrime n (s,t)) primesTo100

 where (s,t) = (n-1) `splitWith` 2

-- Primality Checking which uses appropriate test according to the

given number

isPrime :: Integer -> Bool

isPrime n

 | n < 2 = False

 | n < 500000000 = isTrialDivisionPrime n

 | n >= 500000000 = isMillerRabinPrime n

-- Generate the next prime greater than or equal to the given number

nextPrime :: Integer -> Integer

nextPrime n = head [p | p <- [n..], isPrime p]

-- Prime factorization of a number

primeFactors :: Integer -> [Integer]

primeFactors n = concat (map (\(p,a) -> replicate a p)

(primePowerFactors n))

Mathematical Programming Language Page 78

12.1.6 Matrices

module MPL.LinearAlgebra.Matrix

(

 Matrix(..),

 mAdd,

 mAddL,

 (|+|),

 mSub,

 (|-|),

 mTranspose,

 mScalarMult,

 (|*|),

 mMult,

 mMultL,

 (|><|),

 numRows,

 numCols,

 mat2list,

 determinant,

 inverse,

 mDiv,

 (|/|),

 extractRow,

 extractCol,

 extractRowRange,

 extractColRange,

 mPower,

 trace,

 isInvertible,

 isSymmetric,

 isSkewSymmetric,

 isRow,

 isColumn,

 isSquare,

 isOrthogonal,

 isInvolutive,

 isZeroOne,

 isZero,

 isOne,

 isUnit,

 mMap,

 zero,

 zero',

 one,

 one',

 unit

)

where

import qualified Data.List as L

newtype Matrix a = Matrix [[a]] deriving (Eq)

Mathematical Programming Language Page 79

instance Show a => Show (Matrix a) where

 show (Matrix a) = L.intercalate "\n" $ map (L.intercalate "\t"

. map show) a

-- Matrix addition

mAdd :: Num a => Matrix a -> Matrix a -> Matrix a

mAdd (Matrix a) (Matrix b) = Matrix $ zipWith (zipWith (+)) a b

(|+|) (Matrix a) (Matrix b) = mAdd (Matrix a) (Matrix b)

-- Adding a list of matrices

mAddL :: Num a => [Matrix a] -> Matrix a

mAddL m = foldl1 (mAdd) m

-- Matrix subtraction

mSub :: Num a => Matrix a -> Matrix a -> Matrix a

mSub (Matrix a) (Matrix b) = Matrix $ zipWith (zipWith (-)) a b

(|-|) (Matrix a) (Matrix b) = mSub (Matrix a) (Matrix b)

-- Subtracting a list of matrices

mSubL :: Num a => [Matrix a] -> Matrix a

mSubL m = foldl1 (mSub) m

-- Matrix transposition

mTranspose :: Matrix a -> Matrix a

mTranspose (Matrix []) = (Matrix [])

mTranspose (Matrix [[]]) = (Matrix [[]])

mTranspose xs = Matrix $ foldr (zipWith (:)) (repeat []) (mat2list

xs)

-- Multiplication by a scalar

mScalarMult :: Num a => a -> Matrix a -> Matrix a

mScalarMult x (Matrix m) = Matrix $ map (map (x*)) m

(|*|) x (Matrix m) = mScalarMult x (Matrix m)

-- Matrix multiplication

mMult :: Num a => Matrix a -> Matrix a -> Matrix a

mMult (Matrix m1) (Matrix m2) = Matrix $ [map (multRow r) m2t | r

<- m1]

 where

 (Matrix m2t) = mTranspose (Matrix m2)

 multRow r1 r2 = sum $ zipWith (*) r1 r2

Mathematical Programming Language Page 80

(|><|) (Matrix a) (Matrix b) = mMult (Matrix a) (Matrix b)

-- Multiplying a list of Matrices

mMultL :: Num a => [Matrix a] -> Matrix a

mMultL m = foldl1 (mMult) m

-- Finding number of rows

numRows :: Num a => Matrix a -> Int

numRows (Matrix a) = length a

-- Finding number of columns

numCols :: Num a => Matrix a -> Int

numCols (Matrix a) = numRows (mTranspose (Matrix a))

-- Finding coordinates/position of an element

coords :: Num a => Matrix a -> [[(Int, Int)]]

coords (Matrix a) = zipWith (map . (,)) [0..] $ map (zipWith const

[0..]) a

delmatrix :: Num a => Int -> Int -> Matrix a -> Matrix a

delmatrix i j (Matrix a) = Matrix $ dellist i $ map (dellist j) a

 where

 dellist i xs = take i xs ++ drop (i + 1) xs

-- Converting a Matrix into a list

mat2list :: Matrix a -> [[a]]

mat2list (Matrix m) = m

-- Calculating determinant of a matrix

--determinant :: [[Double]] -> Double

--determinant :: Matrix a -> Double

determinant (Matrix m)

 | numRows (Matrix m) == 1 = head (head m)

 | otherwise = sum $ zipWith addition [0..] m

 where

 addition i (x:_) = x * cofactor i 0 (Matrix m)

-- Calculating cofactor

cofactor :: Int -> Int -> Matrix Double -> Double

cofactor i j (Matrix m) = ((-1.0) ** fromIntegral (i + j)) *

determinant (delmatrix i j (Matrix m))

-- Calculating minors

cofactorM :: Matrix Double -> Matrix Double

cofactorM (Matrix m) = Matrix $ map (map (\(i,j) -> cofactor j i

(Matrix m))) $ coords (Matrix m)

Mathematical Programming Language Page 81

-- Matrix inversion

inverse :: Matrix Double -> Matrix Double

inverse (Matrix m) = Matrix $ map (map (* recip det)) $ mat2list $

cofactorM (Matrix m)

 where

 det = determinant (Matrix m)

-- Matrix division

mDiv :: Matrix Double -> Matrix Double -> Matrix Double

mDiv (Matrix a) (Matrix b) = mMult (Matrix a) (inverse (Matrix b))

(|/|) (Matrix a) (Matrix b) = mDiv (Matrix a) (Matrix b)

-- Extract particular row of a matrix

extractRow :: Matrix a -> Int -> [a]

extractRow (Matrix m) n = m !! n

-- Extract particular column of a matrix

extractCol :: Matrix a -> Int -> [a]

extractCol (Matrix m) n = (mat2list (mTranspose (Matrix m))) !! n

-- Extract range of rows from a matrix

extractRowRange :: Matrix a -> Int -> Int -> Matrix a

extractRowRange (Matrix m) a b = Matrix [extractRow (Matrix m) i | i

<- [a..b]]

-- Extract range of columns from a matrix

extractColRange :: Matrix a -> Int -> Int -> Matrix a

extractColRange (Matrix m) a b = Matrix [extractCol (Matrix m) i | i

<- [a..b]]

-- Power of a matrix

--mPower :: Num a => Matrix a -> Int -> Matrix a

mPower (Matrix matrix) exp =

 if (exp < 0)

 then mPower (inverse (Matrix matrix)) (-exp)

 else

 if(exp == 0)

 then error "Exponent must be non-zero."

 else

 if (exp == 1)

 then (Matrix matrix)

 else

 mMult (Matrix matrix) (mPower (Matrix matrix)

(exp-1))

-- Trace of a matrix

Mathematical Programming Language Page 82

trace (Matrix m) = sum [(extractRow (Matrix m) r) !! c | r <- [0 ..

((numRows (Matrix m)) - 1)], c <- [0 .. ((numCols (Matrix m)) - 1)],

r == c]

-- Invertibility

--isInvertible :: Num a => Matrix a -> Bool

isInvertible (Matrix m) = (determinant (Matrix m)) /= 0

-- Is it symmetric?

--isSymmetric :: Eq a => Matrix a -> Bool

isSymmetric (Matrix m) = (Matrix m) == mTranspose (Matrix m)

-- Is it anti/skew-symmetric?

--isSkewSymmetric :: Eq a => Matrix a -> Bool

isSkewSymmetric (Matrix m) = (Matrix m) == mScalarMult (-1)

(mTranspose (Matrix m))

-- Is it a row matrix?

--isRow :: Ord a => Matrix a -> Bool

isRow (Matrix m) = (numRows (Matrix m) == 1)

-- Is it a column matrix?

--isColumn :: Ord a => Matrix a -> Bool

isColumn (Matrix m) = (numCols (Matrix m) == 1)

-- Is it a square matrix?

--isSquare :: Ord a => Matrix a -> Bool

isSquare (Matrix m) = (numRows (Matrix m) == numCols (Matrix m))

-- Orthogonality

--isOrthogonal :: Eq a => Matrix a -> Bool

isOrthogonal (Matrix m) = (mTranspose (Matrix m) == inverse (Matrix

m))

-- Is it an involutive matrix?

--isInvolutive :: Eq a => Matrix a -> Bool

isInvolutive (Matrix m) = ((Matrix m) == inverse (Matrix m))

-- Is it a 0/1 Matrix?

--isZeroOne :: Ord a => Matrix a -> Bool

isZeroOne (Matrix m) = and [(((m!!r)!!c) == 0) || (((m!!r)!!c) == 1)

| r <- [0..((numRows (Matrix m)) - 1)], c <- [0..((numCols (Matrix

m)) - 1)]]

-- Is it a zero matrix?

--isZero :: Ord a => Matrix a -> Bool

Mathematical Programming Language Page 83

isZero (Matrix m) = and [(m!!r)!!c == 0 | r <- [0..((numRows (Matrix

m)) - 1)], c <- [0..((numCols (Matrix m)) - 1)]]

-- Is it a one matrix?

--isOne :: Ord a => Matrix a -> Bool

isOne (Matrix m) = and [(m!!r)!!c == 1 | r <- [0..((numRows (Matrix

m)) - 1)], c <- [0..((numCols (Matrix m)) - 1)]]

-- Is it a unit matrix?

--isUnit :: Eq a => Matrix a -> Bool

isUnit (Matrix [[]]) = False

isUnit (Matrix [[1]]) = True

isUnit (Matrix m) = and ([isSquare (Matrix m)] ++ [isOrthogonal

(Matrix m)] ++ [isSymmetric (Matrix m)] ++ [trace (Matrix m) ==

fromIntegral (numRows (Matrix m))])

-- Mapping a function to a matrix

mMap f (Matrix m) = Matrix $ map (map f) m

-- Generate special matrices

-- Temp function (converts list to n-row matrix)

chunk' n = takeWhile (not.null) . map (take n) . iterate (drop n)

-- NxN 0 matrix

zero n = Matrix $ chunk' n (take (n*n) $ repeat 0)

-- MxN 0 matrix

zero' m n = Matrix $ chunk' m (take (m*n) $ repeat 0)

-- NxN 1 matrix

one n = Matrix $ chunk' n (take (n*n) $ repeat 1)

-- MxN 1 matrix

one' m n = Matrix $ chunk' m (take (m*n) $ repeat 1)

-- NxN unit matrix

unit n = Matrix $ chunk' n (L.intercalate (take n $ repeat 0)

(mat2list (one' 1 n)))

Mathematical Programming Language Page 84

12.1.7 Combinatorics

module MPL.Combinatorics.Combinatorics

(

 factorial,

 c,

 p,

 permutation,

 shuffle,

 combination

)

where

import Data.List as L

import System.Random

import Control.Applicative

-- Factorial function

factorial :: Integer -> Integer

factorial n

 | (n == 0) = 1

 | (n > 0) = product [1..n]

 | (n < 0) = error "Usage - factorial n, where 'n' is non-

negative."

-- nCr

c :: Integer -> Integer -> Integer

c n r = (factorial a) `div` ((factorial b) * (factorial (a-b)))

 where

 a = max n r

 b = min n r

-- nPr

p :: Integer -> Integer -> Integer

p n r = (factorial a) `div` (factorial (a-b))

 where

 a = max n r

 b = min n r

-- Permutation generation function

permutation :: [a] -> [[a]]

permutation x = L.permutations x

-- Random permutation generation - Fisher-Yates shuffle algorithm

shuffle :: [a] -> IO [a]

shuffle l = shuffle' l []

 where

 shuffle' [] acc = return acc

 shuffle' l acc =

 do

Mathematical Programming Language Page 85

 k <- randomRIO (0, (length l) - 1)

 let (lead, x:xs) = splitAt k l

 shuffle' (lead ++ xs) (x:acc)

-- Generating combination (n at a time, with repetition)

prod as bs = (++) <$> as <*> bs

combination n as = foldr1 prod $ replicate n as

12.2 Preprocessor

12.2.1 Bash Script

#! /usr/bin/sh

preprocess.sh

sed -f script $2 > $3

12.2.2 sed Script

sed script for substituting text according to MPL's syntax

Filename: script

Author : Rohit Jha

Version : 0.1 (24 Jan 2013)

s/Set[\n\t]{/Set [/g;

s/Relation[\n\t]{/Relation [/g;

s/Vector[\n\t]</Vector [/g;

s/Edges[\n\t]{/Edges [/g;

s/Vertices[\n\t]{/Vertices [/g;

s/[\n\t]}/]/g;

s/[\n\t]>/]/g;

