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ABSTRACT 
 

 

Our proposed programming language is a Preprocessed Domain Specific Language (DSL) 

that enables implementation of concepts of discrete mathematics. The language has data 

structures and flow control structures that are expected in a programming language of this 

domain. The language covers the areas of Mathematical Logic, Set Theory, Functions, Graph 

Theory, Combinatorics, Linear Algebra and Number Theory. 

 

A library of data types and functions provides functionality which is frequently required by 

mathematicians and computer scientists. The preprocessor implemented is a syntactical 

preprocessor, translating the DSL program into equivalent base language representation. This 

program is then compiled into binary format, i.e. machine code, and can be executed by 

users. 

 

The advantage of our DSL is that users are provided with a notation close to the actual 

representation used for concepts of discrete mathematics. As a result, this language is better 

suited for usage than a library for a General Programming Language (GPL). 
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1. INTRODUCTION 
 

 

A programming language is an artificial language that is used to communicate instructions to 

a machine, particularly a computer. Programming languages are used to create “programs” 

that control the behavior of a machine and/or express algorithms precisely. 

 

1.1 Elements of a Programming Language 

1. Syntax - The syntax of a programming language is the set of rules that define the 

combinations of symbols that are considered to be correctly structured programs in 

that language. 

2. Semantics – The term „semantics‟ refers to the interpretation meaning of the 

languages as opposed to their syntax/form. Various terms related to semantics of 

programming languages are Static/Dynamic semantics, Static/Dynamic and/or 

Weak/Strong Typed languages. 

1.2 Standard Library 

Most programming languages have an associated core library, conventionally made available 

by all implementations of the language. This library typically includes definitions for 

commonly used algorithms, data structures and mechanisms for input and output. 

 

1.3 Implementation 

Broadly, programming languages can be implemented in two ways – compiled and 

interpreted. Compiler languages make use of a „compiler‟, which translates high-level source 

code to a machine code, which in turn is later executed. Such languages are typically faster 

and require lesser memory than interpreted languages, which are implemented through an 

„interpreter‟, which converts the source code to another high-level language and executes the 

new code. Such implementations are slower, but their performance can be improved by 

techniques such as Just-In-Time compilation in Virtual Machines, which operate on the 

bytecode. 

 

Programming languages can also be classified as General-Purpose and Domain-Specific. 

General-Purpose Languages (GPLs) can be used for writing software in a variety of 

application domains. For example, Ada, C, C++, C#, Java, Perl, Python, Ruby and Scala are 

GPLs. Domain-Specific Languages (DSLs), on the other hand, are dedicated to a particular 

problem domain. Examples of DSLs include HTML, Logo, Verilog, VHDL, Mathematica, 

SQL and YACC. 
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1.4 Quality Requirements 

The final program developed, irrespective of the methodology, must have the following 

properties: 

1. Reliability 

2. Robustness 

3. Usability 

4. Portability 

5. Maintainability 

6. Efficiency/Performance 

 

1.5 Domain-Specific Languages 

1.5.1 Usage Patterns 

● Processing with standalone tools, invoked via direct user operation, often on the 

command line or from a Makefile. 

● Implemented using programming language macro systems, and which are converted 

or expanded into a host GPL at compile-time or read-time. 

● Embedded (or internal) domain-specific languages, implemented as libraries which 

exploit the syntax of their host general purpose language or a subset thereof, while 

adding domain-specific language elements (data types, routines, methods, macros 

etc.) 

● DSLs which are called (at run-time) from programs written in general purpose 

languages like C or Perl, to perform a specific function, often returning the results of 

operation to the "host" programming language for further processing; generally, an 

interpreter or virtual machine for the domain-specific language is embedded into the 

host application. 

● DSLs which are embedded into user applications (e.g., macro languages within 

spreadsheets) and which are used to execute code that is written by users of the 

application, and/or dynamically generated by the application. 

 

1.5.2 Design Goals 

 DSLs are less comprehensive. 

 DSLs are much more expressive in their domain. 

 DSLs should exhibit minimum redundancy. 
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1.5.3 Advantages 

● Domain-specific languages allow solutions to be expressed in the idiom and at the 

level of abstraction of the problem domain. The idea is that domain experts 

themselves may understand, validate, modify, and often even develop domain-specific 

language programs. However, this is seldom the case. 

● Self-documenting code. 

● Domain-specific languages enhance quality, productivity, reliability, maintainability, 

portability and re-usability. 

● Domain-specific languages allow validation at the domain level. As long as the 

language constructs are safe any sentence written with them can be considered safe. 

 

1.5.4 Disadvantages 

● Cost of learning a new language vs. its limited applicability 

● Cost of designing, implementing, and maintaining a domain-specific language as well 

as the tools required to develop with it (IDE) 

● Potential loss of processor efficiency compared with hand-coded software 

● Proliferation of similar non-standard domain specific languages 

● Non-technical domain experts can find it hard to write or modify DSL programs by 

themselves 

● Increased difficulty of integrating the DSL with other system components 

● Low supply of experts in a particular DSL tends to raise labor costs 

● Harder to find code examples 
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2. LITERATURE SURVEY 
 

 

2.1 Domain-Specific Languages 

2.1.1 Definition 

A Domain-Specific Language (DSL) is a programming language that is targeted to a 

particular problem area [1]. By contrast, a General Programming Language (GPL) is used for 

developing software in a variety of application domains. For example, HTML (Hypertext 

Markup Language), Logo, CSS (Cascading Style Sheets), Verilog, SQL (Structured Query 

Language), AutoCAD and YACC (Yet Another Compiler Compiler). 

 

2.1.2 Characteristics of DSLs 

Following are some vital characteristics of DSLs [2]: 

 

1. A central and well-defined domain 

Focusing on the jargon of a problem domain rather than on the jargon of a 

computer implementation is a pervasive characteristic of good DSLs. 

 

2. Clear notation 

Part of the design of a DSL is finding a good notation, and for practical 

reasons of storage and processing it is often convenient to use symbols that are 

easy to enter using a keyboard, mouse, or similar input devices. DSLs are 

designed to be simple, in order to reduce the learning time. 

 

3. Comprehensible informal meaning 

A key part of what makes notations work is that they have a clear meaning, 

shared by all those who use them to communicate. 

 

4. Well-suited for implementation 

This feature distinguishes a DSL from jargon; it means being amenable to 

rigorous, formal treatment, and being well-suited for sensible implementation 

by a machine. In spite of an increased start-up cost, DSL-based methodology 

renders a lesser Total Software Cost, compared to conventional methodology. 

 

2.1.3 Need for DSLs 

The following reasons have led to the need to create and use DSLs [1]: 

● Creating a DSL can be worthwhile if the language allows particular types of problems 

or solutions to be expressed more clearly than what existing languages would allow, 

and also when the type of problem in question reappears sufficiently often. 

● In order to reduce development time, tools with reusable code libraries are required. 

Repetitive tasks to be performed are readily defined in DSLs with custom libraries 

whose scope are restricted to the domain and hence need not be written from scratch 

each time. 
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● There is need for a solution that empowers experts with the power to specify the logic 

of their applications and maintain it at the same time as and when requirements 

change. Domain specific languages provide such solutions that help domain experts to 

easily comprehend and create code for their application. The self-documenting 

feature of DSLs supports it further. 

● It is difficult to map conceptual model of solution into mainstream programming 

language as most time is spent in finding ways to express natural language concepts in 

terms of programming level abstractions (e.g. classes, methods, loops, conditionals, 

etc.). The mapping to DSLs becomes much easier and straightforward because DSLs 

make use of terms and concepts dealt in the specific domain instead of being forced to 

translate ideas into notion that a GPL is able to understand. 

 

2.1.4 Classification of DSLs 

● Internal/Embedded DSLs - It uses the infrastructure of an existing programming 

language (also called the host language of the DSL) to build domain-specific 

semantics on top of it. For example, Rails is an internal DSL implemented on top of 

the Ruby programming language. 

● External DSL - It is developed ground-up and has separate infrastructure for lexical 

analysis, parsing techniques, interpretation, compilation, and code generation. 

Developing an external DSL is similar to implementing a new language from scratch 

with its own syntax and semantics. Build tools like make, parser generators like 

YACC, and lexical analysis tools like LEX are examples of popular external DSLs 

[3]. 

 

2.1.5 DSLs vs. GPLs 

The advantages of DSLs over GPLs are listed below [1]: 

● The scope of a DSL is only up to a specific domain. It therefore allows any domain 

expert to use it, in contrast with general purpose language that requires core 

programming capabilities in order to develop applications. 

● Domain specific languages are very expressive i.e. their syntax is readable and easily 

understandable. 

● DSLs reduce complexity by screening away the internal complex operations of the 

system. GPLs would require manual coding of every detail that becomes cumbersome 

and time consuming. This leads to concise semantic rules. 

● DSLs are more productive as they need lesser programming time compared to GPLs. 

● Domain specific languages support standardization wherein the underlying 

implementation can be changed without the need to change the code. For example, 

HTML is browser independent and can work on all kinds of browsers. 
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2.2 Guidelines for implementing DSLs 

Guidelines can be categorized as follows based on a development-phase oriented 

classification [4]: 

● Language Purpose - Discusses design guidelines for the early activities of the 

language development process. 

● Language Realization - Introduces guidelines which discuss how to implement the 

language. 

● Language Content - Contains guidelines which focus on the elements of a language. 

● Concrete Syntax - Concentrates on design guidelines for the readable (external) 

representation of a language. 

● Abstract Syntax - Concentrates on design guidelines for the internal representation of 

a language. 

 

2.2.1 Language Purpose 

Guideline 1 - 

An early identification of the language uses have strong influence on the concepts the 

language will allow to offer. The concepts can be designed and analyzed for 

feasibility once the uses have been identified. 

 

Guideline 2 - 

Once the uses of a language have been identified it is helpful to embed these forms of 

language uses into the overall software development process. People/roles have to be 

identified that develop, review, and deploy the involved programs and models. After 

this, the developers can question whether the language is too complex or if it captures 

all the necessary domain elements. 

 

Guideline 3 -  

Since DSLs are typically designed for a specific purpose, each feature of a language 

should contribute to this purpose, otherwise it should be omitted for the language to 

remain consistent. 

 

2.2.2 Language Realization 

Guideline 4 - 

The end-user‟s preferences must be matched with the advantages and disadvantages 

of both textual and graphical realization. Textual realization have the advantage of 

faster development and are platform and tool independent, whereas graphical models 

provide better overview and understanding of models in some cases. 

 

Guideline 5 - 

The labor-intensive task of developing a new language can be made easier with 

reusing existing languages. The most general and useful form of language reuse is 

thus the unchanged embedding of an existing language into another language. 
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Guideline 6 - 

If the language cannot be simply composed from some given language parts, it is a 

good idea to reuse existing language definitions as much as possible. Taking the 

definition of a language as a starter to develop a new one is better than creating a 

language from scratch. Both the concrete and the abstract syntax will benefit from this 

form of reuse. The new language might then retain a look-and-feel of the original, 

thus allowing the user to easily identify familiar notations. 

 

Guideline 7 - 

A language designer should reuse existing type systems to improve comprehensibility 

and to avoid errors that are caused by misinterpretations in an implementation. 

 

2.2.3 Language Content 

Guideline 8 - 

While designing a language, only those domain concepts need to be reflected that 

contribute to the tasks the language shall be used for. 

 

Guideline 9 - 

Simplicity is one of the main targets in designing languages. If it is complex, it raises 

the barrier of introducing the language. Even when such a language is introduced, 

unnecessary complexity minimizes the benefit the language should have yielded. 

 

Guideline 10 - 

Designing only what is necessary facilitates a quick and successful introduction of the 

DSL in the domain. 

 

Guideline 11 - 

Limiting the number of language elements makes the DSL easier to understand. To 

include elaborated content, libraries can be used. This results in a flexible, extensible 

and extensive, yet simple language. 

 

Guideline 12 - 

Having several concepts at hand to describe the same fact allows users to model it 

differently and this redundancy is a constant source of problems, such as those found 

in C++ and Perl. Thus, one must avoid conceptual redundancy. 

 

Guideline 13 - 

In order to have an efficient execution, and given the higher level of abstraction to be 

provided, inefficient language elements must be avoided, that would lead to poor 

generated code. 
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2.2.4 Concrete Syntax 

Guideline 14 - 

Rather than inventing a new notation, it is useful to adopt the existing formal notation 

used by domain experts. 

 

Guideline 15 - 

A descriptive notation supports both learnability and comprehensibility of a language 

especially when reusing frequently-used terms and symbols of domain knowledge. 

 

Guideline 16 - 

Easily distinguishable representations of language elements are a basic requirement 

to support understandability. 

 

Guideline 17 - 

Introduction of syntactic sugar can help improve the language‟s expressiveness and 

efficiency, if used appropriately. 

 

Guideline 18 - 

In order to make models more understandable to other developers, provision of 

comments must be made. Preferably, they must be a widely accepted standard form, 

such as /* … */ or //. 

 

Guideline 19 - 

Providing organizational structure for models, such as modules and packages, to the 

language makes it desirable for users to understand and use. 

 

Guideline 20 - 

Comprehensibility of notation is important and must be balanced with compactness 

for the language to be effective. 

 

Guideline 21 - 

To increase understandability, the same look-and-feel should be used for all the 

elements within a language. 

 

Guideline 22 - 

Usage conventions can be used which describe more detailed regulations that can, but 

need not be enforced. 
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2.2.5 Abstract Syntax 

Guideline 23 - 

Given the concrete syntax, the abstract syntax and especially its structure should 

follow closely to the concrete syntax to ease automated processing, internal 

transformations and also presentation (pretty printing) of the model. 

 

Guideline 24 - 

A good layout should be preferred so that it does not affect translation from concrete 

to abstract syntax. 

 

Guideline 25 - 

Enabling modularity helps in developing complex systems. 

 

Guideline 26 - 

Interfaces between parts of a model help users to provide proper exchange of data. 

 

2.3 Developing DSLs 

DSL development generally involves the following phases [5]: 

1. Decision 

2. Analysis 

3. Design 

4. Implementation 

5. Deployment 

 

2.3.1 Decision 

The decision phase corresponds to the “when”-part of DSL development. Deciding in favor 

of a new DSL is usually not easy. The investment in DSL development (including 

deployment) has to pay for itself by more economical software development and/or 

maintenance later on. In practice, short-term considerations and lack of expertise may easily 

cause indefinite postponement of the decision. 

 

To aid in the decision process, we identify a number of decision patterns. These are common 

situations that potential developers find themselves in that might motivate the use of DSLs. 

Underlying these patterns are general, interrelated concerns such as 

● improved software economics, 

● enabling of end-user programming or end-user specification, 

● enabling of domain-specific analysis, verification, optimization, and/or 

transformation. 

 

Following are some commonly used Decision Patterns: 

1. Notation 

The availability of appropriate (new or existing) domain-specific notations is 

the decisive factor. Domain-specific notation beyond the limited user-
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definable operator notation offered by GPLs may be added to an existing 

application library. 

 

2. Task Automation 

Programmers often spend time on GPL programming tasks that are tedious 

and follow the same pattern. In such cases, the required code can be generated 

automatically by an application generator for an appropriate DSL. 

 

3. Data Structure Representation 

Data-driven code relies on initialized data structures whose complexity may 

make them difficult to write and maintain. These structures are often more 

easily expressed using a DSL. 

 

4. Data Structure Traversal 

Traversals over complicated data structures can often be expressed better and 

more reliably in a suitable DSL. 

 

5. System Front-end 

DSL based front-end may be used for handling a system‟s configuration and 

adaptation. 

 

6. Interaction 

Text or menu based interaction with application software often has to be 

supplemented with an appropriate DSL for the specification of complicated or 

repetitive input. 

 

7. AVOT (Analysis-Verification-Optimization-Transformation) 

Domain-specific analysis, verification, optimization, and transformation of 

application programs written in a GPL are usually not feasible, because the 

source code patterns involved are too complex or not well defined. Use of an 

appropriate DSL makes these operations possible. 

 

2.3.2 Analysis 

In the analysis phase of DSL development, the problem domain is identified and domain 

knowledge is gathered. This requires input from domain experts and/or the availability of 

documents or code from which domain knowledge can be obtained. Most of the time, domain 

analysis is done informally, but sometimes domain analysis methodologies such as DARE 

(Domain Analysis and Reuse Environment), DSSA (Domain-Specific Software 

Architectures), FODA (Feature-Oriented Domain Analysis) or ODM (Organization Domain 

Modeling)  are used. 

 

The output of formal domain analysis varies widely, but is some kind of representation of the 

domain knowledge obtained. It may range from a feature diagram, which is a graphical 

representation of assertions (propositions, predicates) about software systems in a particular 
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domain, to a domain implementation consisting of a set of domain-specific reusable 

components, or a full-fledged theory in the case of highly developed scientific domains. 

 

2.3.3 Design 

Approaches to DSL design can be characterized along two orthogonal dimensions: the 

relationship between the DSL and existing languages, and the formal nature of the design 

description. 

 

The easiest way to design a DSL is to base it on an existing language. One possible benefit is 

familiarity for users, but this only applies if the domain users are also programmers in the 

existing language. Another approach is to take an existing language and extend it with new 

features that address domain concepts. In most applications of this pattern the existing 

language features remain available. The challenge is to integrate the domain-specific features 

with the rest of the language in a seamless fashion. 

 

The DSL designer has to keep in mind both the special character of DSLs as well as the fact 

that users need not be programmers. Since ideally the DSL adopts established notations of the 

domain, the designer should suppress a tendency to improve them. 

 

Once the relationship to existing languages has been determined, a DSL designer must turn to 

specifying the design before implementation. In an informal design the specification is 

usually in some form of natural language probably including a set of illustrative DSL 

programs. A formal design would consist of a specification written using one of the available 

semantic definition methods. The most widely used formal notations include regular 

expressions and grammars for syntax specifications, and attribute grammars, rewrite systems 

and abstract state machines for semantic specification. There are several tools available 

which automate these techniques for DSL developers. 

 

Commonly used Design Patterns for DSLs are: 

● Language Exploitation 

DSL is based on an existing language. Important special cases: 

■ Piggyback: Existing language is partially used. 

■ Specialization: Existing language is restricted. 

■ Extension: Existing language is extended. 

 

● Language Extension 

A DSL is designed from scratch with no commonality with existing languages. 

 

● Informal 

A DSL is described informally 

 

● Formal 

A DSL is described formally using an existing semantics definition method 

such as attribute grammars, rewrite systems, or abstract state machines.  
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2.3.4 Implementation 

When a DSL is designed, the most suitable implementation approach should be chosen. Some 

approaches are: 

1. Interpreter 

DSL constructs are recognized and interpreted using a standard fetch-decode-

execute cycle. This is appropriate for languages having a dynamic character or 

if execution speed is not an issue. The advantages of interpretation over 

compilation are greater control over the execution environment and easier 

extension. 

 

2. Compiler/application generator 

DSL constructs are translated to base language constructs and library calls. A 

complete static analysis can be done on the DSL program/ specification. DSL 

compilers are often called application generators. 

 

3. Preprocessor 

DSL constructs are translated to constructs in the base language. Static 

analysis is   limited to that done by the base language processor. Important 

special cases: 

■ Source-to-source transformation: DSL source code is transformed 

(translated) into source code of existing language (the base language). 

■ Pipeline: Processors successively handling sublanguages of a DSL and 

translating them to the input language of the next stage. This pattern 

also includes examples where only simple lexical processing is 

required, without complicated tree-based syntax analysis. 

 

4. Embedding 

In the embedding approach, a DSL is implemented by extending an existing 

GPL (the host language) by defining specific abstract data types and operators. 

Application libraries are the basic form of embedding. 

 

5. Extensible compiler/interpreter 

GPL compiler/interpreter is extended with domain-specific optimization rules 

and/or domain-specific code generation. While interpreters are usually 

relatively easy to extend, extending compilers is hard unless they were 

designed with extension in mind. 

 

6. Commercial Off-The-Shelf (COTS) 

Existing tools and/or notations are applied to a specific domain. 

 

7. Hybrid 

A combination of the above approaches is used. 
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2.3.4.1 Implementation Trade-offs 

Majority of the DSLs are implemented using either the Interpreted design or Embedding 

design. The advantages and disadvantages for these are listed below: 

 

2.3.4.1.1 Interpreted Design 

Advantages: 

● DSL syntax can be close to notations used by domain experts, 

● Good error reporting possible, 

● Domain-specific analysis, verification, optimization, and transformation (AVOT) 

possible 

Disadvantages: 

● The development effort is high because a complex language processor must be 

implemented, 

● The DSL is more likely to be designed from scratch, often leading to incoherent 

designs compared with exploitation of an existing language, 

● Language extension is hard to realize because most language processors are not 

designed with extension in mind. 

The disadvantages can be minimized or eliminated when: 

● A language development system or toolkit is used so that much of the work of 

language processor construction is automated, and 

● A modular and extensible formal method for DSL design is used so that new 

features can be added without significant modification to the processing of old 

features. 

 

2.3.4.1.2 Embedding Design 

Advantages: 

● Development effort is modest because an existing implementation can be reused, 

● Often produces a more powerful language than other methods since many features 

come for free, 

● Reuse of host language infrastructure (development and debugging environments: 

editors, debuggers, tracers, profilers etc.), 

● User training costs might be lower since many users may already know the host 

language. 

Disadvantages: 

● Syntax is far from optimal as most languages do not allow arbitrary syntax 

extension, 

● Overloading existing operators can be confusing if the new semantics does not 

have the same properties as the old, 

● Bad error reporting because messages are in terms of host language concepts 

instead of DSL concepts, 

● Domain-specific optimizations and transformations are hard to achieve, so 

efficiency may be affected, particularly when embedding in functional languages. 
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Fig. 1.  Selecting an Implementation Design Pattern 
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2.3.5 Deployment 

The mode of deployment of DSLs depends on the implementation design pattern selected. In 

case of an embedded DSL, the language can simply be deployed as a library for its base 

language. If the DSL is a preprocessed DSL, the preprocessor must be available to users as an 

executable file or installable module. If the implementation design pattern selected is either 

that of an interpreter of compiler/application generator, then a setup file would have to be 

created and be executed by users for installation. 

 

2.3.6 DSL Design and Implementation Support 

The DSL development process can be facilitated by using a language development system or 

toolkit. The available toolkits have widely different capabilities and are in widely different 

stages of development, but are based on the same general principle: they generate tools from 

language descriptions. Some of these systems support a specific DSL design methodology, 

while others have a largely methodology-independent character. 

 

The input to these systems is a description of various aspects of the DSL to be developed in 

terms of specialized meta-languages. Depending on the type of DSL, some important 

language aspects are syntax, pretty-printing, consistency checking, execution, translation, 

transformation, and debugging. The meta-languages used for describing these aspects are 

themselves DSLs for the particular aspect in question. Some examples of such tools are: 

● ASF + SDF 

● AsmL 

● Draco 

● Eli 

● Gem-Mex 

● InfoWiz 

● JTS 

● Khepera 

● Kodiyak 

● LaCon 

● LISA 

● Metatool 

● POPART 

● smgn 

● SPARK 

● Sprint 

● Stratego 

● TXL 
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3. PROBLEM STATEMENT 
 

 

A Domain-Specific Language proposed by us would aid users working with concepts of 

mathematics. The domain of this programming language is discrete mathematics. The basic 

library modules, which constitute the essential part of the language, include Set theory, 

Functions, Mathematical logic, Linear algebra and Number theory, while Combinatorics and 

Graph theory are the advanced modules. 

 

As part of Set theory, the language supports concepts of Sets and Relations in the form of 

library modules. The library module for Graph theory provides data types, operations and 

functions on Graphs and Trees. Logical operators, namely NOT, AND, OR, NAND, NOR, 

XOR, XNOR, logical implication, logical equality and logical quantifiers (universal and 

existential) would be supported. Under Linear algebra, structures and functions for Matrices, 

Determinants and Vectors have been developed. Concepts relating to prime numbers, such as 

generation and testing, and multi-precision arithmetic would be included as part of Number 

theory. Support for Combinatorics would be in the form of functionality for calculating 

factorials, generating permutations and combinations of sets of elements. Our programming 

language would allow users to create and define their own functions. With these, a 

programmer can use complex functions as well. 
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4. SCOPE 
 

 

The developed Domain Specific Language (DSL) has library modules for Set theory, 

Mathematical Logic, Graph theory, Combinatorics, Number theory, Linear algebra and 

Functions. In addition, it has a preprocessor that translates the DSL‟s syntax into equivalent 

base language syntax. 

 

Besides aiding users working with structures of the aforementioned fields, the DSL would be 

useful in studying and describing objects and problems in branches of computer science, such 

as algorithms, programming languages, cryptography, automated theorem proving 

and software development. Such computer implementations are significant in applying ideas 

from discrete mathematics to real-world problems, such as in computer networks, operations 

research and social science. 

 

For instance, Set theory is considered as a foundation for mathematical analysis, topology, 

abstract algebra, and discrete mathematics. Modern cryptography relies heavily on number 

theory. This is particularly true for public-key cryptography, which is employed for example 

in the SSL and TLS protocols. Furthermore, Graph theory finds applications in social 

networking, schedule development, design and analysis of computer networks, etc. Linear 

algebra is useful for solving Markov chains, which are probabilistic tools, used from 

biological population dynamics models and economics predictions, to traffic-flow models 

and incompressible fluid-flow dynamics. Combinatorics has many applications in 

optimization, computer science, analysis of algorithms, ergodic theory and statistical physics. 

 

The syntax of our programming language is close to that used by domain experts for discrete 

mathematics. In this way, the language is easy to comprehend and learn for everyone. 
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5. SYSTEM DESIGN 
 

 

5.1 Functional Programming Languages 

Functional programming languages are a class of languages designed to reflect the way 

people think mathematically, rather than reflecting the underlying machine. The most 

commonly used functional languages are Standard ML, Haskell, and “pure” Scheme (a 

dialect of LISP), which, although they differ in many ways, share most of the properties of 

functional programming. 

 

5.1.1 Functional Programming 

Functional programming is a programming paradigm that treats computation as the 

evaluation of mathematical functions and avoids state and mutable data. It emphasizes the 

application of functions, in contrast to the imperative programming style, which emphasizes 

changes in state. It has its roots in lambda calculus to investigate function definition, function 

application, and recursion. 

 

5.1.2 Benefits of Functional Programming 

Following are the reasons why using functional programming is beneficial: 

1. Notation good for mathematical representation 

It is possible to reason mathematically about functional programs in the same 

way one does in elementary algebra. 

 

2. Functions are first-class 

A functional programming language supports passing functions as arguments 

to other functions, returning them as the values from other functions, and 

assigning them to variables or storing them in data structures. 

 

3. Higher-order functions 

They are functions that can either take other functions as arguments or return 

them as results. Higher-order functions enable partial application or currying, 

a technique in which a function is applied to its arguments one at a time, with 

each application returning a new function that accepts the next argument. 

 

4. Referential transparency 

An expression is said to be referentially transparent if it can be replaced with 

its value without changing the behavior of a program (in other words, yielding 

a program that has the same effects and output on the same input). Unlike 

mathematics and programs in functional languages, programs in imperative 

languages lack referential transparency. 
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5. Recursion 

Iteration (looping) in functional languages is usually accomplished via 

recursion. Recursive functions invoke themselves, allowing an operation to be 

performed over and over. 

 

6. Good for structured programming 

To make a program structured it is necessary to develop abstractions and split 

it into components which interface each other with those abstractions. 

Functional languages aid this by making it easy to create clean and simple 

abstractions. 

 

7. Short and easy to comprehend 

Imperative programs tend to emphasize the series of steps taken by a program 

in carrying out an action, while functional programs tend to emphasize the 

composition and arrangement of functions, often without specifying explicit 

steps. This results in shorter codes. 

 

8. Ease of maintenance 

The number of lines of code is a primary criteria for determining the ease of 

maintenance of programs. Since programs in functional programming 

languages are shorter, and are self-documenting in nature, they are easier to 

maintain than those written in imperative programming languages. 

 

9. High productivity 

Shorter development time (due to reduced length of programs) and ease of 

maintenance increase programmers‟ productivity. 

 

5.2 Haskell 

Haskell is a standardized, general-purpose purely functional programming language, with 

non-strict semantics and strong static typing. It is named after logician Haskell Curry. In 

Haskell, "a function is a first-class citizen" of the programming language. As a functional 

programming language, the primary control construct is the function. 

 

Haskell is unique for two reasons: 

● It is purely functional. This means that in general, functions in Haskell do not have 

side effects. There is a distinct type for representing side effects, orthogonal to the 

type of functions. A pure function may return a side effect which is subsequently 

executed, modeling the impure functions of other languages. 

● Haskell provides a very modern type system which incorporates features like 

typeclasses and generalized algebraic data types. 

 

  

https://en.wikipedia.org/wiki/Recursion
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5.2.1 Advantages of Haskell 

Following are the advantages of developing Domain-Specific Languages (DSLs) in Haskell: 

● Free and Open Source 

Haskell has the benefit of being a free and open source software (FOSS) 

almost from the beginning. As a result, a variety of libraries, documentation 

and support is available for programmers. This also allows the language to 

continuously evolve over time. 

 

● Lazy Evaluation 

Lazy evaluation or call-by-need is an evaluation strategy which delays the 

evaluation of an expression until its value is needed (non-strict evaluation) and 

which also avoids repeated evaluations (sharing). The benefits of lazy 

evaluation include: 

● Performance increases by avoiding needless calculations, and error 

conditions in evaluating compound expressions 

● The ability to construct potentially infinite data structures 

● The ability to define control flow (structures) as abstractions instead of 

primitives 

 

In Haskell, an infinite-length list of natural numbers can be defined simply as: 

a = [1..] 

When this statement is executed, the entire infinite-length list is not loaded 

into the memory. Rather, when a particular element from the list is indexed, 

only then is it returned. The reference for index „5‟ is performed by the simple 

statement: b = a !! 5 

 

● Expressive type system 

The use of algebraic data types and pattern matching makes manipulation of 

complex data structures convenient and expressive; the presence of strong 

compile-time type checking makes programs more reliable, while type 

inference frees the programmer from the need to manually declare types to the 

compiler. 

 

● Pure functional programming language 

As a result of being a “pure” functional programming language, the notation 

of Haskell is closer to mathematical notations than other programming 

languages, functional or otherwise. 

 

● Very High Level Language (VHLL) 

This results in providing users with good abstraction, aiding programmer 

productivity and enhancing maintainability of the programs. For instance, 

Quicksort in Haskell is: 

 

http://en.wikipedia.org/wiki/Evaluation_strategy
http://en.wikipedia.org/wiki/Evaluation_strategy
http://en.wikipedia.org/wiki/Non-strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation
http://en.wikipedia.org/wiki/Sharing#In_computer_science
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Control_flow
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quicksort :: Ord a => [a] -> [a] 

quicksort []     = [] 

quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater) 

    where 

        lesser  = filter (< p) xs 

        greater = filter (>= p) xs 

This is much shorter than the equivalent program in imperative languages such 

as C or Java. 

 

● Composite functions 

Provision of Higher Order Functions allows a programmer to work with 

composite functions, which are simply a combination of two or more first 

order functions. For Haskell, function composition can be explained by the 

following code: 

desort = (reverse . sort) 

  countdown = desort [2,8,7,10,1,9,5,3,4,6] 

  -- output: [10,9,8,7,6,5,4,3,2,1] 

Here, the dot „.‟ operator is used for combining the two built-in functions 

„sort‟ and „reverse‟. The argument of the first function is the value returned 

from the second. 

 

● Smart garbage collector 

Haskell computations produce a lot of memory garbage - much more than 

conventional imperative languages. It's because data are immutable so the only 

way to store every next operation's result is to create new values. In particular, 

every iteration of a recursive computation creates a new value. But GHC 

(Glasgow Haskell Compiler) is able to efficiently manage garbage collection, 

so it's not uncommon to produce 1GB of data per second with most part being 

garbage collected immediately. Incidentally, GHC‟s efficiency in execution 

and memory management is second only to that of GCC. 

 

● Polymorphic types and functions 

Most polymorphism in Haskell falls into one of two broad categories: 

parametric polymorphism and ad-hoc polymorphism. Parametric 

polymorphism refers to when the type of a value contains one or more 

(unconstrained) type variables, so that the value may adopt any type that 

results from substituting those variables with concrete types. Ad-hoc 

polymorphism refers to when a value is able to adopt any one of several types 

because it, or a value it uses, has been given a separate definition for each of 

those types. Polymorphism is defined for functions as well. This means that 

functions can take the same number of arguments as those of different data 

types. For example, a sorting function can take as input a list of integers, 

floating point numbers, strings or any other data type. A function signature 

such as id :: a -> a denotes that the function „id‟ is defined for data „a‟, 

which may be of any data type. 

http://www.haskell.org/haskellwiki/Polymorphism#Parametric_polymorphism
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism
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● Extensible 

Haskell was built keeping in mind the extensibility required for modern 

functional programming languages. This allows a provision of user defined 

functions, types, classes, modules, etc. 

 

● Very few reserved words 

As a result, a programmer can have a multitude of names for variables and 

functions. 

 

● Flexible syntax 

Haskell has a very flexible syntax, and offers higher-order functions. 

Therefore, we can often mimic the visual style of a particular domain directly 

within the language. 

 

● Syntactic sugar 

Syntactic sugar is a computer science term that refers to syntax within a 

programming language that is designed to make things easier to read or to 

express. Specifically, a construct in a language is called syntactic sugar if it 

can be removed from the language without any effect on what the language 

can do: functionality and expressive power will remain the same. 

 

● Finite and infinite-precision integer arithmetic 

Haskell has two integral types: 

 Int- limited-precision or single-precision integers  

 Integer - arbitrary-precision integers 

 

5.3 Implementation Strategies 

Using Haskell, the proposed Domain-Specific Language (DSL) for mathematics could be 

implemented in the following three ways: 

 

5.3.1 Embedded DSL 

An Embedded Domain Specific Language (EDSL), or Internal DSL, is a DSL that is defined 

as a library for a generic "host" programming language. The embedded DSL inherits the 

generic language constructs of its host language - sequencing, conditionals, iteration, 

functions, etc. - and adds domain-specific primitives that allow programmers to work at a 

much higher level of abstraction. There are two major degrees of embedding, shallow and 

deep. 

 

● Shallow Embedding 

All Haskell operations immediately translate to the target language. E.g. the 

Haskell expression a+b is translated to a String like "a + b" containing that 

target language expression. 

 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Syntax
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Function_(engineering)
http://en.wikipedia.org/wiki/Expressive_power
http://en.wikipedia.org/wiki/Expressive_power
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● Deep Embedding 

Haskell operations only build an interim Haskell data structure that reflects the 

expression tree. E.g. the Haskell expression a+b is translated to the Haskell 

data structure Add (Var "a") (Var "b"). This structure allows 

transformations like optimizations before translating to the target language. 

 

For this style of programming to work well, the syntax of the generic language must be 

flexible and expressive enough to "get out of the way" of the embedded DSL. That usually 

means that the host language should have a very minimal syntax. Since Haskell provides us 

with all these, it is an ideal choice for a host programming language. 

 

The advantage of building a DSL as an EDSL is that the development time is significantly 

reduced. Moreover, if users are satisfied with or used to the syntax of the host language, then 

they would face no problems in using the EDSL, since the syntax would remain identical. 

 

 
 

Fig. 2.  Flow Diagram for Embedded DSL 

 

The user‟s program would be written in the new DSL. The library would have modules for 

functionality regarding Set theory, Mathematical logic, Combinatorics, etc. The Haskell 

compiler would take this program, along with the library, as input, and then produce an 

executable. 

 

5.3.2 Preprocessed DSL 

In situations where the syntax of a host language may be a limitation, DSLs can be developed 

by creating a preprocessor that translates the DSL‟s syntax into the host language‟s syntax, 

and then executes the resultant host language code. This type of preprocessor is classified as a 

Syntactic Preprocessor. 

 

Programs for the language to be developed are operated upon by such a preprocessor, which 

not only translates the syntax into the host language‟s syntax, but also imports required 

libraries for the generated code. This code is then be compiled and executed by the host 

language‟s compiler to produce the output. 
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In this way, a preprocessor helps in 

● Customizing syntax 

● Extending a language 

● Specializing a language 

 

 

Fig. 3.  Flow Diagram for Preprocessed DSL 

 

The user‟s program would be written in the new DSL. The library would have modules for 

functionality regarding Set theory, Mathematical logic, Combinatorics, etc. The preprocessor 

would process the elements of the DSL and convert them to equivalent Haskell code. This 

code would then be compiled to produce an executable. 

 

5.3.3 Interpreted DSL 

An interpreter normally means a computer program that executes, i.e. performs, instructions 

written in a programming language. An interpreter may be a program that either 

a) executes the source code directly 

b) translates source code into some efficient intermediate representation (code) and 

immediately executes this 

c) explicitly executes stored precompiled code made by a compiler which is part of the 

interpreter system 

 

While interpreting and compiling are the two main means by which programming languages 

are implemented, these are not fully mutually exclusive categories, one of the reasons being 

that most interpreting systems also perform some translation work, just like compilers. The 
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terms "interpreted language" or "compiled language" merely mean that the canonical 

implementation of that language is an interpreter or a compiler; a high level language is 

basically an abstraction which is (ideally) independent of particular implementations.  

 

Following are the advantages of using an interpreter for implementing a DSL: 

● Development cycle 

A programmer using an interpreter does a lot less waiting, as the interpreter 

usually just needs to translate the code being worked on to an intermediate 

representation (or not translate it at all), thus requiring much less time before 

the changes can be tested. 

 

● Distribution 

An interpreted program can be distributed as source code. It needs to be 

translated in each final machine, which takes more time but makes the 

program distribution independent of the machine's architecture. 

 

The functioning of the interpreter can be depicted as: 

 

 
 

Fig. 4.  Flow Diagram for Interpreted DSL 

 

The DSL source code would be given as input to the developed interpretation system. This 

source code would be first passed to the Lexical Analyzer, which would tokenize the content 

and pass it to the Syntax Analyzer, and then to the Semantic Analyzer. On successful parsing, 

the Code Generator would produce an intermediate code representation. Combined with the 

external libraries, the Interpreter executes the Intermediate Language Code to give the 

execution result. 
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5.4 Selected Design 

Of the three strategies mentioned previously, we have chosen to implement our programming 

language as a Preprocessed Domain-Specific Language (DSL). A preprocessor allows the 

DSL to have syntax different than the base language, which in this case is Haskell. Moreover, 

preprocessing is a pragmatic choice as efficiency of the generated code would not be affected 

if a Haskell compiler, such as GHC (Glasgow Haskell Compiler), were to operate on it by 

translating it to machine code. 

 

 

Fig. 5.  The design selected from among the three possible ones 
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6. SYSTEM REQUIREMENTS 
 

 

6.1 Hardware Requirements 

To develop the Mathematical Programming Language, the system hardware requirements are 

as follows: 

● Development Platform Architecture: 64-bit (x86-64/amd64) 

● Minimum Disk Space: 200MB 

● Minimum Memory Required: 64MB 

6.2 Software Requirements 

Following is a list of software required for the development of Mathematical Programming 

Language: 

 Development Platform: Linux, x86-64/amd64 

 Operating System: Fedora 17 

 Base Language: Haskell 

 Haskell Compiler: GHC (Glasgow Haskell Compiler), version 7.0.4 
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7. PROPOSED MODULES 

The DSL‟s implementation required developing of a library of modules for discrete 

mathematics and a preprocessor. The details of the same are mentioned in the following 

sections. 

7.1 Library Design 

The library consists of modules containing data types and functions for the following fields of 

discrete mathematics: 

 Mathematical Logic 

 Set Theory 

 Graph Theory 

 Number Theory 

 Linear Algebra 

 Combinatorics 

7.1.1 Mathematical Logic 

Logic is a vital topic of discrete mathematics, with applications in foundations of 

mathematics, formal logic systems and proofs. Often, set theory, model theory and recursion 

theory are considered as subsections of logic. In the DSL, logical operators and quantifiers 

from propositional logic, Boolean algebra and predicate logic are supported. This includes 

operators such as negation (NOT), conjunction (AND), disjunction (OR), exclusive 

disjunction (XOR), inverse conjunction (NAND), inverse disjunction (NOR), inverse 

exclusive disjunction (XNOR), logical implication (if...then), logical equality (iff), universal 

quantifier (for all) and existential quantifier (there exists some) and parentheses – “(“ and “)”. 

Haskell provides a unary Boolean negation function (not) and binary operators for 

conjunction (&&) and disjunction (||), allowing development of other operators using these. 

Besides these, in Haskell, the universal and existential quantifiers are given by “forall” and 

„exists‟, respectively. The library module for mathematical logic also contains functions for 

applying the operations mentioned on lists of Boolean values. 

7.1.2 Set Theory 

According to Georg Cantor, the founder of set theory, a set is a gathering together into a 

whole of definite, distinct objects of our perception and of our thought - which are called 

elements of the set. The module currently focuses on naive set theory, operations on sets, 

relations, properties of relations and closures. Later, functionality would be added for groups, 

rings, fields, group-theoretic lattices and order-theoretic lattices, which find applications in 

cryptography and computational physics. 

For sets, the module on set theory provides users with support for concepts such as checking 

for membership, empty/null set, subset, superset, generating power sets, finding cardinality, 

set difference, determining equality of sets, calculating Cartesian product, union of two sets, 

union of a list of sets, intersection of two sets, intersection of a list of sets, checking if two 
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sets or a list of sets are disjoint, and mapping functions to sets. Working on sets is eased 

immensely with the provision of lists and list comprehension in Haskell. 

Relations are sets of ordered pairs from elements of two sets, and are also called binary 

relations. The module for set theory in the library of the DSL contains functions for checking 

properties of relations. Important among these are those for checking if a relation is reflexive, 

symmetric, asymmetric, anti-symmetric, transitive, equivalence, partial order (weak or strict) 

and total order (weak or strict). With these as a base, functions for creating reflexive, 

symmetric and transitive closures are also developed and included in the library. As relations 

are essentially sets at their core, they can be combined by the operations of union, 

intersection, difference and composition. Composition also allows calculating powers of a 

relation and thus, the determination of transitive closures. The module also contains functions 

to check if a relation is a weak partial order, strong partial order, weak total order or strong 

total order. 

7.1.3 Graph Theory 

Considered the prime objects of study in discrete mathematics, and ubiquitous models for 

natural as well as man-made structures, graphs and trees are an important component of the 

DSL. This module provides support for users in computer science for studying networks, 

flow of computation, social network analysis, etc. In mathematics it would help users 

working with geometry, topology and group theory. 

Graphs can be formally represented as the triple G = (V, E, ϕ), where V is a finite set of 

vertices, E is the finite set of edges and ϕ is the incidence function, with domain E and co-

domain P
2
(V). Here, P

2
(V) represents the two-element subset of the power set P(V). For 

example, consider the graph represented as G = (V, E, ϕ), such that V = {A, B, C}, E = {a, b, 

c, d} and ϕ = {(A, B), (A, B), (A, C), (B, C)}. Graphs may also be directed, in which case, 

the co-domain of ϕ would become V*V. An example of a directed graph can be G = (V, E, 

ϕ), such that V = {A, B, C}, E = {a, b, c, d} and ϕ = {(A, B), (B, A), (A, C), (C, B)}. 

Important graph operations such as finding in-degree and out-degree of vertices, finding 

nodes adjacent to a given node, checking for cycles, calculating union of graphs, determining 

if a graph is a subgraph of another, finding existence of Euler paths, Euler circuits, 

Hamiltonian paths and Hamiltonian circuits are included in the module for graph theory in 

the DSL‟s library as well. Apart from these operations, the library also contains algorithms 

for Dijkstra‟s shortest path, Prim‟s and Kruskal‟s Minimum Spanning Tree algorithms, 

Depth-First Search, and Breadth-First Search. 

This library module also contains functionality for Trees, primarily in the form of Binary 

Trees. It also contains frequently used functions such as in-order, pre-order and post-order 

tree traversals, inserting nodes in a tree, finding total number of nodes, searching for a 

particular node using Binary Search, determining height of a tree, checking if a tree is 

balanced and calculating depth of a node. 
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7.1.4 Number Theory 

Number theory is one of the oldest and largest branches of mathematics. It primarily deals 

with the study of integers, but it also involves studying prime numbers, rational numbers and 

equations. Some applications of concepts in number theory are finding solutions to 

simultaneous linear equations, numerical analysis, group theory, field theory and elliptic 

curve cryptography. 

The module for number theory covers generation of prime numbers using Sieve of 

Eratosthenes, primality testing using trial division and Miller-Rabin test, prime factorization 

of integers and random number generation. This module also contains functions for Fibonacci 

numbers, including generating a list of Fibonacci terms and finding the nth term of the 

Fibonacci series. 

Elementary number theory consists of base/radix operations and manipulations. Accordingly, 

the module provides support for handling bases ranging up from 1 to any integer. This 

includes operations of addition, subtraction, multiplication, division and exponentiation in all 

bases, apart from conversion of numbers from a particular base to another. 

Another important part of number theory is modular arithmetic. The DSL‟s library supports 

solving linear congruence relations of the form ax ≡ b (mod m) and also evaluation of 

modular operations such as addition, multiplication and exponentiation. 

7.1.5 Linear Algebra 

The branch of linear algebra deals with vector spaces and linear mappings between these 

spaces. These are used to represent systems of linear equations in multiple unknowns. 

Combined with calculus, linear algebra facilitates the solution of differential equations. 

Linear algebra is applied in quantum mechanics, systems using the Fourier series, and several 

fields where simultaneous linear equations need to be solved. 

The module for linear algebra in the DSL‟s library contains data structures for Vectors and 

Matrices, which are the essence of linear algebra. Vectors are represented as n-valued tuples 

<v1, v2 ... vn>, and n×m Matrices as [row1, row2 ... rown], where rowi = 

[ai1, ai2 ... aim] and aij is an element. For example, consider the examples of a 

vector used in three-dimensional Cartesian system: Vector <3,2,-7> and the third order 

unit matrix: Matrix [[1,0,0], [0,1,0], [0,0,1]]. Operations such as finding 

the order of a matrix, calculating trace, transpose, determinant, inverse, multiplication, 

division, addition, subtraction and power of matrices are frequently applied in matrix theory, 

and functions for the same have been included in the library module. 

The module also contains functions for checking properties of a matrix or whether a matrix is 

of a certain type. Some of these include checking if a matrix is symmetric, skew-symmetric, 

orthogonal, involutory, 0/1, unit/identity matrix, a zero matrix or a one matrix. In addition, a 

mapping function for matrices allows the application of a single function to all the elements 

of a matrix. The module contains functions for generating unit matrices of order n, m×n zero 

and one matrices. 
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For vectors, functions are developed for addition, subtraction, multiplication (scalar/dot/inner 

product, vector product, scalar triple product and vector triple product), calculating 

magnitude of a vector, calculating angle between two vectors, mapping a function to a vector, 

checking if a vector is a unit vector, determining order of vectors and extracting an element 

or even a range of elements from a vector. The module also contains functions to find sum 

and difference of a list of Vectors. 

7.1.6 Combinatorics 

This branch of mathematics deals with the study of countable discrete structures. This 

involves counting the structures, determining criteria, and constructing and analyzing objects 

satisfying these criteria. In computer science, combinatorics is used frequently in analysis of 

algorithms to obtain estimates and formulas. 

For users involved in computational combinatorics, this DSL would be helpful as it has a 

module consisting of frequently used functions such as those to find factorials, permutations 

and combinations, generate permutation and combination lists and also to generate random 

permutations using the Fisher-Yates/Knuth shuffle algorithm. 

7.2 Preprocessor 

The language is a Preprocessed DSL, wherein the Preprocessor is tasked with translating the 

language‟s syntax into equivalent Haskell representation. The Preprocessor is essentially a 

Bash script, „preprocess.sh‟, which invokes another program, „script‟, written in sed. The tool 

sed was selected since it provides excellent functionality for working with regular 

expressions. Since the preprocessor would not perform as much computation as a parser, 

scripts written in sed suffice. When the Bash script is called by GHC with users‟ programs 

written in the DSL as arguments, the sed script is executed over the programs and Haskell 

programs are generated for these files. This program is compiled by GHC to produce a binary 

executable. When executed, it generates the output. 

The commands to compile and run a DSL program named „myprogram.hs‟ are: 

$ ghc –F –pgmF ./preprocess.sh myprogram.hs 

$ ./myprogram 

 

7.3 Deployment of the DSL 

The DSL‟s library is written in Haskell, which is the base language, and can be packaged as 

an installable Haskell library using Cabal (Common Architecture for Building Applications 

and Libraries), which comes with the Haskell Platform. This package can be compressed in a 

gzipped tarball (.tar.gz) and uploaded on the web or community-repositories such as 

Hackage. A user need only download this file, extract the contents and setup the library like 

any other Haskell package, using the Setup.hs file. In addition, the Bash and sed scripts for 

Preprocessor can be downloaded and placed in a directory. Simply adding this directory to 

the OS‟s path and modifying the access privileges to add permissions for execution would 

allow completed use of the DSL. 
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8. IMPLEMENTATION AND RESULTS 

 

This section describes modules from the DSL‟s library, including declaration of these 

modules and a few sample functions with results for every module. In addition, this section 

also contains details of applications developed using the DSL. 

 

8.1 Mathematical Logic 

The module for mathematical logic contains the following declaration for exporting functions 

to users‟ programs: 

module MPL.Logic.Logic 

( 

 and', 

 or', 

 xor, 

 xnor, 

 nand, 

 nor, 

 equals, 

 implies, 

 (/\), 

 (\/), 

 (==>), 

 (<=>), 

 notL, 

 andL, 

 orL, 

 xorL, 

 xnorL, 

 nandL, 

 norL 

) 

where 

 

Here, MPL.Logic.Logic is the module‟s name, indicating that the file is stored in the 

directory MPL/Logic and is named Logic.hs. This declaration is followed by definitions for 

each of the functions mentioned. 

For example, consider the definition of the function for logical implication: 

implies :: Bool -> Bool -> Bool 

implies a b 

 | (a == True)&&(b == False) = False 

 | otherwise = True 
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In accordance with the objective of creating a notation close to the one actually used in 

discrete mathematics, an operator for logical implication is defined as follows: 

(==>) :: Bool -> Bool -> Bool 

a ==> b = implies a b 

 

This provides syntactic sugar and improves readability. Now, the function for logical 

implication may be called by the user in any of the following three ways, all giving the same 

result - False: 

implies True False 

True `implies` False 

True ==> False 

As mentioned in 7.1.1, this module also defines functions which work on a list of Boolean 

values. The difference between the names of these functions and those of unary or binary 

functions is that they contain an additional „L‟ as suffix, indicating that they operate on lists. 

A common operation is to find the XOR (Exclusive OR) of a list of values. Since the module 

already contains a function for finding the XOR of two values, it can be used to XOR the 

result of XOR of two values with the next value. Repeating this process for the length of the 

list gives a single final Boolean value. Such functions for lists of Boolean values are 

implemented using Haskell‟s foldl1 function. The xorL function is defined as: 

xorL :: [Bool] -> Bool 

xorL a = foldl1 (xor) a 

 

Here, a represents a list of Bool. An example of this function‟s usage is: 

xorL [True, False, True, True, False] 

This returns the Bool value True. The results of invoked functions and sample usage of 

operators are shown in Fig. 6. 

 

8.2 Set Theory 

Under set theory, the library contains modules for working on Sets and Relations. 

8.2.1 Sets 

The module for Sets is declared as: 

module MPL.SetTheory.Set  

( 

 Set(..), 

 set2list, 
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 union, unionL, 

 intersection, 

intersectionL, 

 difference, 

 isMemberOf, 

 cardinality, 

 isNullSet, 

 isSubset, 

 isSuperset, 

 powerSet, 

 cartProduct, 

 disjoint, 

disjointL, 

 sMap 

) 

where 

 

The function union is defined as: 

union :: Ord a => Set a -> Set a -> Set a 

union (Set set1) (Set set2) 

 = Set $ (sort . nub) (set1 ++ [e | e <- set2, not (elem e 

set1)]) 

 

This is based on the definition that the union of two sets is the set containing all elements 

from that first set, and all elements from the second set that are not in the first. In addition, 

duplicates from this set are removed and this resultant set is sorted. If this function is called 

as union (Set {2,4,6}) (Set {1,2,3}), the output would be the set 

{1,2,3,4,6}. 

A common set operation is that of finding the Cartesian product of two sets. In the library 

module, it is defined as: 

cartProduct :: Ord a => Set a -> Set a -> [(a,a)] 

cartProduct (Set set1) (Set set2) 

= Set [(x,y) | x <- set1', y <- set2'] 

  where  

set1' = (sort . nub) set1 

   set2' = (sort . nub) set2 

 

This function may be called as cartProduct (Set {1,2}) (Set {3,4}) to 

produce the result as the set {(1,3),(1,4),(2,3),(2,4)}. 

In several conditions, it is requires to check if two sets are disjoint. For this, the module 

contains the function disjoint, and it is defined as: 

disjoint :: Ord a => Set a -> Set a -> Bool 

disjoint (Set s1) (Set s2) = isNullSet $ intersection (Set s1) 

(Set s2) 
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If a user were to invoke this function as disjoint (Set {1,3..10}) (Set 

{2,4..10}), then he/she would get back True as the output. These results are shown in 

Fig. 7. 

 

8.2.2 Relations 

The module for Relations is declared as: 

module MPL.SetTheory.Relation 

( 

 Relation(..), 

 relation2list, 

 getFirst, 

 getSecond, 

 elemSet, 

 returnFirstElems, 

 returnSecondElems, 

 isReflexive, 

 isIrreflexive, 

 isSymmetric, 

 isAsymmetric, 

 isAntiSymmetric, 

 isTransitive, 

 rUnion, 

 rUnionL, 

 rIntersection, 

 rIntersectionL, 

 rDifference, 

 rComposite, 

 rPower, 

 reflClosure, 

 symmClosure, 

 tranClosure, 

 isEquivalent, 

 isWeakPartialOrder, 

 isWeakTotalOrder, 

 isStrictPartialOrder, 

 isStrictTotalOrder 

) 

where 

 

Consider the definition for the isTransitive function: 

isTransitive :: Eq a => Relation a -> Bool 

isTransitive (Relation r) 

= andL [(a,c) `elem` r | a <- elemSet r, b <- elemSet r, c <- 

elemSet r, (a,b) `elem` r, (b,c) `elem` r] 
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This function may be called by the user as isTransitive (Relation 

{(1,1),(1,2),(2,1)}), which would return False. However, the call 

isTransitive (Relation {(1,1),(1,2),(2,1),(2,2)}) would return 

True. This result is shown in Fig. 8. 

The symmClosure function returns symmetric closure of the relation passed to it. It is 

defined as: 

symmClosure :: Ord a => Relation a -> Relation a 

symmClosure (Relation r) = rUnion (Relation r) (rPower 

(Relation r) (-1)) 

 

This function uses the property that symmetric closure of a relation is the union of that 

relation with its inverse. Calling the function as symmClosure (Relation 

{(1,1),(1,3)}) would give the result as the relation {(1,1),(1,3),(3,1)}. 

 

8.3 Graph Theory 

Under graph theory, the library contains modules for Graphs and Trees. 

8.3.1 Graphs 

Declaration for the module on graphs is: 

module MPL.GraphTheory.Graph 

( 

 Vertices(..), 

 vertices2list, 

 Edges(..), 

 edges2list, 

 Graph(..), 

 GraphMatrix(..), 

 graph2matrix, 

 getVerticesG, 

 getVerticesGM, 

 numVerticesG, 

 numVerticesGM, 

 getEdgesG, 

 getEdgesGM, 

 numEdgesG, 

 numEdgesGM, 

 convertGM2G, 

 convertG2GM, 

 gTransposeG, 

 gTransposeGM, 

 isUndirectedG, 
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 isUndirectedGM, 

 isDirectedG, 

 isDirectedGM, 

 unionG, 

 unionGM, 

 addVerticesG, 

 addVerticesGM, 

 verticesInEdges, 

 addEdgesG, 

 addEdgesGM, 

 areConnectedGM, 

 numPathsBetweenGM, 

 adjacentNodesG, 

 adjacentNodesGM, 

 inDegreeG, 

 inDegreeGM, 

 outDegreeG, 

 outDegreeGM, 

 degreeG, 

 degreeGM, 

 hasEulerCircuitG, 

 hasEulerCircuitGM, 

 hasEulerPathG, 

 hasEulerPathGM, 

 hasHamiltonianCircuitG, 

 hasHamiltonianCircuitGM, 

 countOddDegreeV, 

 countEvenDegreeV, 

 hasEulerPathNotCircuitG, 

 hasEulerPathNotCircuitGM, 

 isSubgraphG, 

 isSubgraphGM 

) 

where 

 

As stated in section 7.1.3, the module contains functions which work on graphs defined both 

formally and as matrices. Functions for the former have „G‟ as suffix, while functions for the 

latter have „GM‟ as suffix. The implementation of functions for both is made possible by the 

functions convertG2GM and convertGM2G, which convert between the formal and 

matrix representations. 

Consider the function for determining if a graph is undirected: 

isUndirectedGM :: Ord a => GraphMatrix a -> Bool 

isUndirectedGM (GraphMatrix gm) 

= (GraphMatrix gm) == gTransposeGM (GraphMatrix gm) 

 

When called as isUndirectedGM (GraphMatrix [[0,5],[5,0]]), True is 

returned. The invocation of functions for graphs is shown in Fig. 9. 
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Using the property of that a graph has an Euler circuit only if all vertices have even degree, 

the function hasEulerCircuitG is defined as: 

hasEulerCircuitG :: Ord a => Graph a -> Bool 

hasEulerCircuitG (Graph g) 

= and [ even $ (degreeG (Graph g) (Vertices [v])) | v <- 

vertices2list $ getVerticesG (Graph g)] 

Thus, an invocation such as hasEulerCircuitG (Graph (Vertices {1,2}, 

Edges {(1,2,4),(2,1,3)})) would result in a return of True. 

 

8.3.2 Trees 

The module for trees has the following declaration: 

module MPL.GraphTheory.Tree 

( 

 BinTree(..), 

 inorder, 

 preorder, 

 postorder, 

 singleton, 

 treeInsert, 

 treeSearch, 

 reflect, 

 height, 

 depth, 

 size, 

 isBalanced 

) 

where 

 

The functions inorder, preorder and postorder are functions for tree traversal. The 

definition for preorder is: 

preorder :: BinTree a -> [a] 

preorder Leaf = [] 

preorder (Node x t1 t2) = [x] ++ preorder t1 ++ preorder t2 

 

If we consider the following BinTree: 

tree = 

 Node 4 

  (Node 2 

   (Node 1 Leaf Leaf) 

   (Node 3 Leaf Leaf)) 

     (Node 7 

       (Node 5 

        Leaf 
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        (Node 6 Leaf Leaf)) 

       (Node 8 Leaf Leaf)) 

 

Then the function call, preorder tree, would generate the result [4,2,1,3,7,5,6,8]. 

In essence, the BinTree data type is a Binary Search Tree. The function treeSearch, is 

an implementation of the Binary Search algorithm and has the following definition: 

treeElem :: Ord a => a -> BinTree a -> Bool 

treeElem x Leaf = False  

treeElem x ( Node a left right ) 

 | x == a = True 

 | x < a = treeElem x left 

 | x > a = treeElem x right 

 

The function isBalanced recursively checks if the height of all nodes at the same level are 

equal. The definition of this function makes use of the height function and is as follows: 

isBalanced :: BinTree a -> Bool 

isBalanced Leaf = True 

isBalanced (Node x t1 t2) = isBalanced t1 && isBalanced t2 && 

(height t1 == height t2) 

 

If this function is applied on tree as isBalanced tree, the output would be False. The 

results of functions for Trees are shown in Fig. 10. 

 

8.4 Number Theory 

Under number theory, the library contains the following modules: 

4.4.1 Base/Radix Manipulation 

This module has the description: 

module MPL.NumberTheory.Base 

( 

 toBase, 

 fromBase, 

 toAlphaDigits, 

 fromAlphaDigits 

) 

where 

 

The function toBase converts a decimal number into the equivalent form of a specified 

base/radix. It has the definition: 
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toBase :: Int -> Int -> [Int] 

toBase base v = toBase' [] v 

where 

  toBase' a 0 = a 

  toBase' a v = toBase' (r:a) q 

where 

(q,r) = v `divMod` base 

 

When invoked as toBase 8 37 or as 37 `toBase` 8, the result would be [4,5], 

which is read as 45, octal for 37. The result of toBase is also shown in Fig. 11. 

 

4.4.2 Fibonacci Series 

The module on Fibonacci series contains two functions, fib and fibSeries. The function 

fib takes an integer as parameter and returns the term at that index in the Fibonacci series. It 

is defined as: 

fib n = round $ phi ** fromIntegral n / sq5 

 where 

  sq5 = sqrt 5 :: Double 

  phi = (1 + sq5) / 2 

 

If called as fib 10, the output is 55. 

The fibSeries function takes an integer as parameter and returns the Fibonacci series as 

a list of integers. The definition is: 

fibSeries n = [fib i | i <- [1..n]] 

If a user wants to obtain the first 10 numbers in the Fibonacci series, he/she has to call the 

function as fibSeries 10, which gives the result [1,1,2,3,5,8,13,21,34,55]. 

The sample usage of functions from this module is shown is Fig. 12. 

 

4.4.3 Modular Arithmetic 

This module has the description: 

module MPL.NumberTheory.Modular 

( 

 modAdd, 

 modSub, 

 modMult, 

 modExp, 

 isCongruent, 

 findCongruentPair, 

 findCongruentPair1 
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) 

where 

 

The modExp function is the function for modular exponentiation. It takes the numbers a, b 

and m as parameters and computes the value of ab mod m. The definition is: 

modExp a b m = modexp' 1 a b 

 where 

 modexp' p _ 0 = p 

 modexp' p x b = 

  if even b 

  then modexp' p (mod (x*x) m) (div b 2) 

  else modexp' (mod (p*x) m) x (pred b) 

 

If invoked as modExp 112 34 546, the integer 532 is returned. The sample usage of 

functions defined in this module is shown in Fig. 13. 

 

4.4.4 Prime Numbers 

This module has the following description: 

module MPL.NumberTheory.Primes 

( 

 primesTo, 

 primesBetween, 

 firstNPrimes, 

 isPrime, 

 nextPrime, 

 primeFactors 

) 

where 

 

The function primesTo generates all prime numbers less than or equal to the number 

passed as parameter, using the Sieve of Eratosthenes. Its definition is: 

primesTo :: Integer -> [Integer] 

primesTo 0 = [] 

primesTo 1 = [] 

primesTo 2 = [2] 

primesTo m = 2 : sieve [3,5..m] 

 

The invocation primesTo 20 produces the output as [2,3,5,7,11,13,17,19]. The 

usage of this function, as well as of the other functions from this module is shown in Fig. 14. 
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8.5 Linear Algebra 

Under linear algebra, the library has modules for Matrices and Vectors. 

4.5.1 Matrices 

The module for matrices has the following description: 

module MPL.LinearAlgebra.Matrix 

( 

 Matrix(..), 

 mAdd, 

 mAddL, 

 (|+|), 

 mSub, 

 (|-|), 

 mTranspose, 

 mScalarMult, 

 (|*|), 

 mMult, 

 mMultL, 

 (|><|), 

 numRows, 

 numCols, 

 mat2list, 

 determinant, 

 inverse, 

 mDiv, 

 (|/|), 

 extractRow, 

 extractCol, 

 extractRowRange, 

 extractColRange, 

 mPower, 

 trace, 

 isInvertible, 

 isSymmetric, 

 isSkewSymmetric, 

 isRow, 

 isColumn, 

 isSquare, 

 isOrthogonal, 

 isInvolutory, 

 isZeroOne, 

 isZero, 

 isOne, 

 isUnit, 

 zero, 

zero’, 

one, 

one’, 
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unit, 

 mMap 

) 

where 

 

The mMult function performs multiplication of two matrices and returns the resultant matrix. 

Its definition is: 

mMult :: Num a => Matrix a -> Matrix a -> Matrix a 

mMult (Matrix m1) (Matrix m2) = Matrix $ [ map (multRow r) m2t 

| r <- m1 ] 

 where  

 (Matrix m2t) = mTranspose (Matrix m2) 

 multRow r1 r2 = sum $ zipWith (*) r1 r2 

 

To add syntactic sugar, the module provides the operator |><| for multiplying two matrices. 

Thus, if a user wishes to multiply a Matrix, m1, which is defined as Matrix 

[[1,0],[0,1]] and a Matrix, m2, which is defined as Matrix [[4.5,8],[(-

10),6]], he/she can call either mMult m1 m2 or m1 |><| m2, to get the output as 

Matrix [[4.5,8.0],[(-10.0),6.0]]. The usage and result is shown in Fig. 15. 

Another common operation is to find inverse of a matrix. In this module, the function 

inverse is defined using the functions cofactorM and determinant as: 

inverse (Matrix m) = Matrix $ map (map (* recip det)) $ 

mat2list $ cofactorM (Matrix m) 

 where 

  det = determinant (Matrix m) 

 

If called as inverse (Matrix [[1,1],[1,(-1)]]), the result is Matrix 

[[0.5,0.5],[0.5,(-0.5)]]. 

The module contains several functions to check for properties of a matrix. One of these is 

isOrthogonal, which is to check if a matrix is orthogonal. Using the functions 

mTranspose and inverse it is easily defined as: 

isOrthogonal (Matrix m) = (mTranspose (Matrix m) == inverse 

(Matrix m)) 

When it is used as isOrthogonal (Matrix [[1,1],[1.2,(-1.5)]]), the output 

is False. 

 

4.5.2 Vectors 

This module‟s description is: 

module MPL.LinearAlgebra.Vector 
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( 

 Vector(..), 

 vDim, 

 vMag, 

 vec2list, 

 vAdd, 

 vAddL, 

 (<+>), 

 vSub, 

 vSubL, 

 (<->), 

 innerProd, 

 (<.>), 

 vAngle, 

 scalarMult, 

 (<*>), 

 isNullVector, 

 crossProd, 

 (><), 

 scalarTripleProd, 

 vectorTripleProd, 

 extract, 

 extractRange, 

 areOrthogonal, 

 vMap, 

 vNorm 

) 

where 

 

The vAngle function returns the angle between two Vectors. It has the definition: 

vAngle :: Floating a => Vector a -> Vector a -> a 

vAngle (Vector []) (Vector []) = 0 

vAngle (Vector v1) (Vector v2) = acos ( (innerProd (Vector v1) 

(Vector v2)) / ( (vMag (Vector v1)) * (vMag (Vector v2))) 

 

As shown in Fig. 16, when invoked as vAngle (Vector [1,1,1]) (Vector 

[0,1,0]), the result is 0.9553166181245092 (radians). 

The function scalarTripleProduct is based on the functions innerProduct and 

crossProduct. It is defined as: 

scalarTripleProd a b c = innerProd a (crossProd b c) 

To normalize a Vector, the vNorm function can be used. It has the definition: 

vNorm (Vector v) = scalarMult (1/(vMag (Vector v))) (Vector v) 

If called as vNorm (Vector [1,2,3]), the output is the Vector 

<0.2672612419124244, 0.5345224838248488, 0.8017837257372732> 
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8.6 Combinatorics 

This module has the description: 

module MPL.Combinatorics.Combinatorics 

( 

 factorial, 

 c, 

 p, 

 permutation, 

 shuffle, 

 combination 

) 

where 

 

The function definition for factorial is: 

factorial :: Integer -> Integer 

factorial n 

 | (n == 0) = 1 

 | (n > 0) = product [1..n] 

 | (n < 0) = error "Usage - factorial n, where 'n' is non-

negative." 

 

This function can return arbitrarily large integers since its return type is Integer. When 

factorial 5 is called, the result 120 is returned. 

The factorial function acts as a base for other functions in the module. For example, the 

function p returns the number of possible permutations of r objects from a set of n given by 

nPr. It is defined as: 

p :: Integer -> Integer -> Integer 

p n r = div (factorial a) (factorial (a-b)) 

 where 

  a = max n r 

  b = min n r 

 

When this function is called as p 10 5 or 10 `p` 5, 30240 is the output. Usage of 

functions of this module is shown in Fig. 17. 

 

8.7 Applications 

This section contains descriptions of the applications developed using the Mathematical 

Programming Language as a DSL for discrete mathematics. These include ciphers such as 

those of Caesar and Transposition, RSA encryption and decryption system, implementation 

of the Diffie-Hellman Key Exchange Protocol, solution to simultaneous linear equations and 

Mersenne prime numbers. 
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8.7.1 Caesar Cipher 

The Caesar Cipher is based on the concept of enciphering by replacing each character of a 

string by the character three positions to its right in the alphabet. The process of deciphering 

is the reverse of enciphering, i.e. replacing each character by the character three positions to 

its left in the alphabet. The implementation of this cipher in the DSL is shown in Fig. 18. 

8.7.2 Transposition Cipher 

Enciphering of a text by Transposition Cipher involves changing the relative positions of the 

characters forming the text. The result after enciphering appears as the jumbled string, 

containing the same characters as the plain text. The working of this cipher‟s implementation 

in the DSL is shown in Fig. 19. 

8.7.3 RSA Encryption and Decryption 

Using the library modules MPL.NumberTheory.Primes, MPL.NumberTheory.Modular and 

MPL.NumberTheory.Base of the Mathematical Programming Language, the RSA system for 

encryption and decryption was easily implemented. For implementation, the RSA algorithm 

was followed. This was extended to a menu-driven program, the results of which can be seen 

in Fig. 20 and Fig. 21. 

8.7.4 Diffie-Hellman Key Exchange 

The Diffie-Hellman Key Exchange protocol was implemented in the DSL using the library 

modules of MPL.NumberTheory.Modular, MPL.NumberTheory.Primes and 

MPL.NumberTheory.Base. This algorithm involves selecting common primitive root and 

prime number, and then generation of a shared key by a party using the other‟s public key 

and its own private key. This algorithm‟s implementation is the DSL is shown in Fig. 22. 

8.7.5 Simultaneous Linear Equation 

The solution to simultaneous linear equations can be found very easily by using the extensive 

functionality of the module on matrices in the DSL‟s library. The command line usage is 

shown in Fig. 23. The usage of the DSL program in Eclipse is shown in Fig. 24. The program 

is: 

import MPL.LinearAlgebra.Matrix 

 

solveEqns (Matrix coeff) (Matrix const) = (inverse (Matrix 

coeff)) |><| (Matrix const) 

 

8.7.6 Mersenne Prime Numbers 

Mersenne Prime Numbers are prime numbers of the form 2
q
 – 1, where q is also a prime 

number. Since the DSL‟s library on prime numbers, MPL.NumberTheory.Primes, provides 

efficient ways to deal with prime numbers, the finding of even large Mersenne prime 

numbers is a cinch. The results are shown in Fig. 25.  
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9. SCREENSHOTS 

9.1 Mathematical Logic 

 

9.2 Set Theory 

9.2.1 Sets 

 

9.2.2 Relations 

 

 
Fig. 8.  Functions for Relations in GHCi 

 

 
Fig. 7.  Functions for Sets in GHCi 

 

 
Fig. 6.  Functions for Mathematical Logic in GHCi 
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9.3 Graph Theory 

9.3.1 Graphs 

 

9.3.2 Trees 

 

9.4 Number Theory 

9.4.1 Base Manipulation 

 

 
Fig. 11.  Functions for Base Manipulation in GHCi 

 

 
Fig. 10.  Functions for Trees in GHCi 

 

 
Fig. 9.  Functions for Graphs in GHCi 
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9.4.2 Fibonacci Sequence 

 

9.4.3 Modular Arithmetic 

 

9.4.4 Prime Numbers 

 

  

 
Fig. 14.  Functions for Prime Numbers in GHCi 

 

 
Fig. 13.  Functions for Modular Arithmetic in GHCi 

 

 
Fig. 12.  Functions for Fibonacci Sequence in GHCi 
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9.5 Linear Algebra 

9.5.1 Matrices 

 

9.5.2 Vectors 

 

  

 
Fig. 16.  Functions for Vectors in GHCi 

 

 
Fig. 15.  Functions for Matrices in GHCi 
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9.6 Combinatorics 

 

9.7 Applications 

9.7.1 Caesar Cipher 

 

  

 
Fig. 18.  Enciphering using Caesar Cipher 

 

 
Fig. 17.  Functions for Combinatorics in GHCi 
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9.7.2 Transposition Cipher 

 

9.7.3 RSA Encryption and Decryption 

 

 
Fig. 20.  Encryption using RSA 

 

 
Fig. 19.  Deciphering using Transposition Cipher 
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9.7.4 Diffie-Hellman Key Exchange Protocol 

  

 
Fig. 22.  Diffie-Hellman Key Exchange Protocol 

 

 
Fig. 21.  Decryption using RSA 
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9.7.5 Simultaneous Linear Equations 

 

  

 
Fig. 24.  Solution to Simultaneous Linear Equations in Eclipse 

 

 
Fig. 23.  Solution to Simultaneous Linear Equations 
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9.7.6 Mersenne Prime Numbers 

 

 

  

 
Fig. 26.  List of Mersenne Prime Numbers up to 2

100
-1 

 

 
Fig. 25.  List of Mersenne Prime Numbers’ powers up to 1000 
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10. CONCLUSION AND FUTURE SCOPE 

 

The Mathematical Programming Language has been successfully implemented as a 

Preprocessed Domain-Specific Language (DSL) for Discrete Mathematics. 

The DSL contains two major components – a library and the preprocessor. Haskell is the base 

language for the library and the preprocessor translates the DSL programs into equivalent 

Haskell programs, which are then compiled by GHC after importing the required library 

modules.This DSL is available as an installable package for all platforms on which Haskell is 

supported. 

Since discrete mathematics is a vast area of study, it is not possible to include all topics in the 

library during the initial stages of development. In the future, modules for group theory, 

information theory, geometry, topology and theoretical computer science can be added. 

Additionally, the preprocessor can be constantly updated to handle new modules and new 

features in existing ones. Apart from this, based on feedback and suggestions from users, the 

syntax of this DSL can be improved to suit their needs.  
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12. APPENDIX 

12.1 DSL Library Modules 

12.1.1 Mathematical Logic 

The Haskell code for this module is: 

module MPL.Logic.Logic 

( 

 and', 

 or', 

 xor, 

 xnor, 

 nand, 

 nor, 

 equals, 

 implies, 

 (/\), 

 (\/), 

 (==>), 

 (<=>), 

 notL, 

 andL, 

 orL, 

 xorL, 

 xnorL, 

 nandL, 

 norL 

) 

where 

 

-- Binary XOR Function 

xor :: Bool -> Bool -> Bool 

xor a b 

 | a == b = False 

 | otherwise = True 

 

 

-- Binary XNOR Funtion 

xnor :: Bool -> Bool -> Bool 

xnor a b = not (xor a b) 

 

 

-- Binary NAND Function 

nand :: Bool -> Bool -> Bool 

nand a b = not (a && b) 

 

 

-- Binary NOR Function 

nor :: Bool -> Bool -> Bool 

nor a b = not (a || b) 

 

 

-- Binary Logical Equality 

equals :: Bool -> Bool -> Bool 
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equals a b = a == b 

 

 

-- Binary Logical Implication 

implies :: Bool -> Bool -> Bool 

implies a b 

 | (a == True) && (b == False) = False 

 | otherwise = True 

 

 

-- Binary and Operator 

(/\) :: Bool -> Bool -> Bool 

a /\ b = a && b 

 

 

-- Binary or Operator 

(\/) :: Bool -> Bool -> Bool 

a \/ b = a || b 

 

 

-- Binary implication Operator 

(==>) :: Bool -> Bool -> Bool 

a ==> b = implies a b 

 

 

-- Binary equality Operator 

(<=>) :: Bool -> Bool -> Bool 

a <=> b = a == b 

 

 

-- unary not Operator on a list of Bool 

notL :: [Bool] -> [Bool] 

notL a = map not a 

 

 

-- Binary and Operator on a list of Bool 

andL :: [Bool] -> Bool 

andL a = foldl1 (&&) a 

 

 

-- Binary or Operator on a list of Bool 

orL :: [Bool] -> Bool 

orL a = foldl1 (||) a 

 

 

-- Binary xor Operator on a list of Bool 

xorL :: [Bool] -> Bool 

xorL a = foldl1 (xor) a 

 

 

-- Binary nand Operator on a list of Bool 

nandL :: [Bool] -> Bool 

nandL a = foldl1 (nand) a 

 

 

-- Binary nor Operator on a list of Bool 
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norL :: [Bool] -> Bool 

norL a = foldl1 (nor) a 

 

 

-- Binary xnor Operator on a list of Bool 

xnorL :: [Bool] -> Bool 

xnorL a = foldl1 (xnor) a 

 

12.1.2 Sets 

The Haskell code for this module is: 

module MPL.SetTheory.Set  

( 

 Set(..), 

 set2list, 

 union, 

 unionL, 

 intersection, 

 intersectionL, 

 difference, 

 isMemberOf, 

 cardinality, 

 isNullSet, 

 isSubset, 

 isSuperset, 

 powerSet, 

 cartProduct, 

 disjoint, 

 disjointL, 

 natural, 

 natural', 

 whole, 

 whole', 

 sMap 

) 

where 

 

 

-- Union of Sets 

union :: Ord a => Set a -> Set a -> Set a 

union (Set set1) (Set set2) 

 = Set ((L.sort . L.nub) (set1 ++ [e | e <- set2, not (elem e 

set1)])) 

 

 

-- Union of a list of Sets 

unionL :: Ord a => [Set a] -> Set a 

unionL s = foldl1 (union) s 

 

 

-- Intersection of Sets 

intersection :: Ord a => Set a -> Set a -> Set a 

intersection (Set set1) (Set set2) 

 = Set ((L.sort . L.nub) [e | e <- set1, (elem e set2)]) 
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-- Intersection of a list of Sets 

intersectionL :: Ord a => [Set a] -> Set a 

intersectionL s = foldl1 (intersection) s 

 

 

-- Set difference 

difference :: Ord a => Set a -> Set a -> Set a 

difference (Set set1) (Set set2) 

 = Set ((L.sort . L.nub) [e | e <- set1, not (elem e set2)]) 

 

 

-- Membership 

isMemberOf :: Eq a => Element a -> Set a -> Bool 

isMemberOf a (Set []) = False 

isMemberOf a (Set set) = a `elem` set 

 

 

-- Cardinality 

cardinality :: Eq a => Set a -> Int 

cardinality (Set set) = (L.length . L.nub) set 

 

 

-- Empty/Null Set verification 

isNullSet :: Eq a => Set a -> Bool 

isNullSet (Set set) 

 | cardinality (Set set) == 0 = True 

 | otherwise = False 

 

 

-- Subset verification 

isSubset :: Ord a => Set a -> Set a -> Bool 

isSubset (Set set1) (Set set2) = null [e | e <- set1', not (elem e 

set2')] 

 where set1' = (L.sort . L.nub) set1 

  set2' = (L.sort . L.nub) set2 

 

 

-- Superset verification 

isSuperset :: Ord a => Set a -> Set a -> Bool 

isSuperset (Set set1) (Set set2) = null [e | e <- set2', not (elem e 

set1')] 

 where set1' = (L.sort . L.nub) set1 

  set2' = (L.sort . L.nub) set2 

 

 

-- Power set 

powerSet :: Ord a => Set a -> Set (Set a) 

powerSet (Set s) = Set $ map (\xs -> (Set xs)) (L.subsequences $ 

set2list (Set s)) 

 

 

powerSet' :: Ord a => Set a -> Set (Set a) 

powerSet' (Set xs) = Set $ L.sort (map (\xs -> (Set xs)) (powerList 

xs)) 
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powerList :: Ord a => [a] -> [[a]] 

--powerList :: [a] -> [[a]] 

powerList [] = [[]] 

powerList (x:xs) = L.sort $ (powerList xs) ++ (map (x:) (powerList 

xs)) 

 

 

-- Cartesian product 

cartProduct :: Ord a => Set a -> Set a -> [(Element a,Element a)] 

cartProduct (Set set1) (Set set2) = [(x,y) | x <- set1', y <- set2'] 

 where set1' = (L.sort . L.nub) set1 

  set2' = (L.sort . L.nub) set2 

 

 

-- Checking if two sets are disjoint 

disjoint :: Ord a => Set a -> Set a -> Bool 

disjoint (Set set1) (Set set2) = isNullSet $ intersection (Set set1) 

(Set set2) 

 

 

-- Checking if all Sets in a list are disjoint 

disjointL :: Ord a => [Set a] -> Bool 

disjointL s = isNullSet $ intersectionL s 

 

 

-- Set of natural numbers 

natural = [1,2..] 

 

 

-- Set of natural numbers upto n 

natural' n = [1,2..n] 

 

 

-- Set of whole numbers 

whole = [0,1..] 

 

 

-- Set of whole numbers upto n 

whole' n = [0,1..n] 

 

 

-- Mapping a function to a Set 

sMap f (Set s) = list2set $ map f s 

 

12.1.3 Relations 

module MPL.SetTheory.Relation 

( 

 Relation(..), 

 relation2list, 

 getFirst, 

 getSecond, 

 elemSet, 
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 returnFirstElems, 

 returnSecondElems, 

 isReflexive, 

 isIrreflexive, 

 isSymmetric, 

 isAsymmetric, 

 isAntiSymmetric, 

 isTransitive, 

 rUnion, 

 rUnionL, 

 rIntersection, 

 rIntersectionL, 

 rDifference, 

 rComposite, 

 rPower, 

 reflClosure, 

 symmClosure, 

 tranClosure, 

 isEquivalent, 

 isWeakPartialOrder, 

 isWeakTotalOrder, 

 isStrictPartialOrder, 

 isStrictTotalOrder 

) 

where 

 

 

import qualified Data.List as L 

 

 

-- Relation data type 

newtype Relation a = Relation [(a,a)] deriving (Eq) 

 

instance (Show a) => Show (Relation a) where 

 showsPrec _ (Relation s) str = showRelation s str 

 

showRelation [] str = showString "{}" str 

showRelation (x:xs) str = showChar '{' (shows x (showl xs str)) 

 where  

  showl [] str = showChar '}' str 

  showl (x:xs) str = showChar ',' (shows x (showl xs str)) 

 

 

-- Converting a relation to list 

relation2list (Relation r) = r 

 

 

elemSet r = L.union (getFirst (Relation r)) (getSecond (Relation r)) 

 

 

-- Returns list of all 'a' where (a,b) <- Relation 

getFirst (Relation r) = L.nub [fst x | x <- r] 

 

 

-- Returns list of all 'b' where (a,b) <- Relation 

getSecond (Relation r) = L.nub [snd x | x <- r] 
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-- Returns list of all 'a' where (a,b) <- Relation and 'b' is 

specified 

returnFirstElems (Relation r) x = L.nub [fst (a,x) | a <- getFirst 

(Relation r), (a,x) `elem` r] 

 

 

-- Returns list of all 'b' where (a,b) <- Relation and 'a' is 

specified 

returnSecondElems (Relation r) x = L.nub [snd (x,b) | b <- getSecond 

(Relation r), (x,b) `elem` r] 

 

 

-- Checks if a relation is reflexive or not 

isReflexive (Relation r) = and [(a,a) `elem` r | a <- elemSet r] 

 

 

isIrreflexive (Relation r) = not $ isReflexive (Relation r) 

 

 

-- Checks if a relation is symmetric or not 

isSymmetric (Relation r) = and [((b,a) `elem` r) | a <- elemSet r, b 

<- elemSet r, (a,b) `elem` r] 

 

 

-- Checks if a relation is asymmetric or not 

isAsymmetric (Relation r) = and [not ((b,a) `elem` r) | a <- elemSet 

r, b <- elemSet r, (a,b) `elem` r] 

 

 

isAntiSymmetric (Relation r) = and [ a==b | a <- elemSet r, b <- 

elemSet r, (a,b) `elem` r, (b,a) `elem` r] 

 

 

-- Checks if a relation is transitive or not 

 

isTransitive (Relation r) = and [(a,c) `elem` r | a <- elemSet r, b 

<- elemSet r, c <- elemSet r, (a,b) `elem` r, (b,c) `elem` r] 

 

 

-- Returns union of two relations 

rUnion (Relation r1) (Relation r2) = Relation ((L.sort . L.nub) (r1 

++ [e | e <- r2, not (elem e r1)])) 

 

 

-- Returns union of list of relations 

rUnionL r = foldl1 (rUnion) r 

 

 

-- Returns intersection of two relations 

 

rIntersection (Relation r1) (Relation r2) = Relation ((L.sort . 

L.nub) [e | e <- r1, (elem e r2)]) 
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-- Returns intersection of a list of relations 

rIntersectionL r = foldl1 (rIntersection) r 

 

 

-- Returns difference of two relations 

rDifference (Relation r1) (Relation r2) = Relation ((L.sort . L.nub) 

[e | e <- r1, not (elem e r2)]) 

 

 

-- Returns composite of two relations 

rComposite (Relation r1) (Relation r2) = Relation $ L.nub [(a,c) | a 

<- elemSet r1, b <- elemSet r1, b <- elemSet r2, c <- elemSet r2, 

(a,b) `elem` r1, (b,c) `elem` r2] 

 

 

-- Returns power of a relation 

rPower (Relation r) pow = 

 if (pow == (-1)) 

 then Relation [(b,a) | (a,b) <- r] 

 else 

  if (pow == 1) 

  then (Relation r) 

  else rComposite (rPower (Relation r) (pow-1)) (Relation 

r) 

 

 

-- Reflexive closure 

reflClosure (Relation r) = rUnion (Relation r) (delta (Relation r)) 

 where 

  delta (Relation r) = Relation [(a,b) | a <- elemSet r, b 

<- elemSet r, a == b] 

 

 

-- Symmetric closure 

symmClosure (Relation r) = rUnion (Relation r) (rPower (Relation r) 

(-1)) 

 

 

-- Transitive closure 

tranClosure (Relation r) = foldl1 (rUnion) [ (rPower (Relation r) n) 

| n <- [1 .. length (elemSet r) ]] 

 

 

isEquivalent (Relation r) = isReflexive (Relation r) && isSymmetric 

(Relation r) && isTransitive (Relation r) 

 

 

isWeakPartialOrder (Relation r) = isReflexive (Relation r) && 

isAntiSymmetric (Relation r) && isTransitive (Relation r) 

 

 

isWeakTotalOrder (Relation r) = isWeakPartialOrder (Relation r) && 

(and [ ((a,b) `elem` r) || ((b,a) `elem` r) | a <- elemSet r, b <- 

elemSet r ] ) 
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isStrictPartialOrder (Relation r) = isIrreflexive (Relation r) && 

isAsymmetric (Relation r) && isTransitive (Relation r) 

 

 

isStrictTotalOrder (Relation r) = isStrictPartialOrder (Relation r) 

&& (and [ ((a,b) `elem` r) || ((b,a) `elem` r) || a==b | a <- 

elemSet r, b <- elemSet r ] ) 

 

 

12.1.4 Graphs 

module MPL.GraphTheory.Graph 

( 

 Vertices(..), 

 vertices2list, 

 Edges(..), 

 edges2list, 

 first, 

 second, 

 third, 

 Graph(..), 

 GraphMatrix(..), 

 graph2matrix, 

 getVerticesG, 

 getVerticesGM, 

 numVerticesG, 

 numVerticesGM, 

 getEdgesG, 

 getEdgesGM, 

 numEdgesG, 

 numEdgesGM, 

 convertGM2G, 

 convertG2GM, 

 gTransposeG, 

 gTransposeGM, 

 isUndirectedG, 

 isUndirectedGM, 

 isDirectedG, 

 isDirectedGM, 

 unionG, 

 unionGM, 

 addVerticesG, 

 addVerticesGM, 

 verticesInEdges, 

 addEdgesG, 

 addEdgesGM, 

 areConnectedGM, 

 numPathsBetweenGM, 
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 adjacentNodesG, 

 adjacentNodesGM, 

 inDegreeG, 

 inDegreeGM, 

 outDegreeG, 

 outDegreeGM, 

 degreeG, 

 degreeGM, 

 hasEulerCircuitG, 

 hasEulerCircuitGM, 

 hasEulerPathG, 

 hasEulerPathGM, 

 hasHamiltonianCircuitG, 

 hasHamiltonianCircuitGM, 

 countOddDegreeV, 

 countEvenDegreeV, 

 hasEulerPathNotCircuitG, 

 hasEulerPathNotCircuitGM, 

 isSubgraphG, 

 isSubgraphGM 

) 

where 

 

import qualified Data.List as L 

 

 

-- Data type for vertices 

newtype Vertices a = Vertices [a] deriving (Eq) 

 

instance (Show a) => Show (Vertices a) where 

 showsPrec _ (Vertices s) str = showVertices s str 

 

showVertices [] str = showString "{}" str 

showVertices (x:xs) str = showChar '{' (shows x (showl xs str)) 

 where  

  showl [] str = showChar '}' str 

  showl (x:xs) str = showChar ',' (shows x (showl xs str)) 

 

vertices2list (Vertices v) = v 

 

 

-- Data types for edges 

newtype Edges a = Edges [(a,a,Int)] deriving (Eq) 

 

instance (Show a) => Show (Edges a) where 

 showsPrec _ (Edges s) str = showEdges s str 

 

showEdges [] str = showString "{}" str 
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showEdges (x:xs) str = showChar '{' (shows x (showl xs str)) 

 where  

  showl [] str = showChar '}' str 

  showl (x:xs) str = showChar ',' (shows x (showl xs str)) 

 

edges2list (Edges a) = a 

 

first (a,b,c) = a 

second (a,b,c) = b 

third (a,b,c) = c 

 

 

-- Data type for Graph 

newtype Graph a = Graph (Vertices a, Edges a) deriving (Eq, Show) 

 

 

-- Data type for Graph as matrix 

newtype Matrix a = Matrix [[a]] deriving (Eq) 

 

instance Show a => Show (Matrix a) where 

 show (Matrix a) = L.intercalate "\n" $ map (L.intercalate "\t" 

. map show) a 

 

 

newtype GraphMatrix a = GraphMatrix [[a]] deriving (Eq) 

 

instance Show a => Show (GraphMatrix a) where 

 show (GraphMatrix a) = L.intercalate "\n" $ map (L.intercalate 

"\t" . map show) a 

 

graph2matrix (GraphMatrix gm) = gm 

 

 

-- Get vertices of a Graph 

--getVertices :: Num a => Graph a -> Vertices a 

getVerticesG (Graph g) = fst g 

 

 

-- Number of vertices of Graph 

--numVertices :: Num a => Graph a -> Integer 

numVerticesG (Graph g) = fromIntegral $ length $ vertices2list $ 

getVerticesG (Graph g) 

 

 

-- Number of edges of a Graph 

numEdgesG (Graph g) = fromIntegral $ length $ edges2list $ getEdgesG 

(Graph g) 
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-- Get edges of a Graph 

--getEdges :: Num a => Graph a -> Edges a 

getEdgesG (Graph g) = snd g 

 

 

-- Get vertices of a GraphMatrix 

--getVerticesGM :: Num a => GraphMatrix a -> Vertices a 

getVerticesGM (GraphMatrix gm) = Vertices [1 .. fromIntegral $ 

length gm] 

 

 

-- Get number of vertices of GraphMatrix 

numVerticesGM (GraphMatrix gm) = length gm 

 

 

-- Find weight of edge between nodes i and j 

weight (GraphMatrix gm) i j = fromIntegral $ ((graph2matrix 

(GraphMatrix gm))!!i)!!j 

 

 

-- Get edges of a GraphMatrix 

--getEdgesGM :: Num a => GraphMatrix a -> Edges a 

getEdgesGM (GraphMatrix gm) = Edges [(i+1,j+1,(w i j)) | i <- [0 .. 

fromIntegral $ ((length (graph2matrix (GraphMatrix gm)))-1)], j <- 

[0 .. fromIntegral $ ((length (graph2matrix  

 

(GraphMatrix gm)))-1)], ((weight (GraphMatrix gm) i j) /= 0)] 

 where 

  w i j = fromIntegral $ weight (GraphMatrix gm) i j 

 

 

-- Number of edges in a GraphMatrix 

numEdgesGM (GraphMatrix gm) = fromIntegral $ length $ edges2list $ 

getEdgesGM (GraphMatrix gm) 

 

 

-- Convert GraphMatrix to Graph 

--convertGM2G :: Num a => GraphMatrix a -> Graph a 

convertGM2G (GraphMatrix gm) = Graph ((getVerticesGM (GraphMatrix 

gm)), (getEdgesGM (GraphMatrix gm))) 

 

 

 

-- Convert Graph to adjacency GraphMatrix 

--convertG2GM' :: Num a => Graph a -> [a] 

getLastVertex (Graph g) = (L.reverse $ L.sort $ vertices2list $ 

getVerticesG (Graph g)) !! 0 
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--convertG2GM' (Graph g) = [(f i j) | i <- [1 .. (numVerticesG 

(Graph g))], j <- [1 .. (numVerticesG (Graph g))]] 

convertG2GM' (Graph g) = [(f i j) | i <- vertices2list $ 

(getVerticesG (Graph g)), j <- vertices2list $ (getVerticesG (Graph 

g))] 

 where 

  edgeList = [(first e, second e) | e <- edges2list 

(getEdgesG (Graph g))] 

   

  f i j =  

   if ((i),(j)) `elem` edgeList 

   then third (w i j (Graph g)) 

   else 0 

   

  w i j (Graph g) =  

   [(i,j,k) | k <- [0 .. (maxWeight (Graph g))], 

(i,j,k) `elem` (edges2list (snd g))] !! 0 

   

  maxWeight (Graph g) = fromIntegral $ ((L.reverse . 

L.sort) [third x | x <- edges2list (snd g)]) !! 0 

 

 

chunk' n = takeWhile (not.null) . map (take n) . iterate (drop n) 

 

 

convertG2GM (Graph g) = GraphMatrix $ chunk' (numVerticesG (Graph 

g)) (convertG2GM' (Graph g)) 

 

 

-- Transpose of a graph (GraphMatrix) 

gTransposeGM (GraphMatrix []) = (GraphMatrix []) 

gTransposeGM (GraphMatrix [[]]) = (GraphMatrix [[]]) 

gTransposeGM (GraphMatrix xs) = GraphMatrix $ foldr (zipWith (:)) 

(repeat []) xs 

 

 

-- Transpose of a graph (Graph) 

gTransposeG (Graph g) = convertGM2G $ gTransposeGM $ (convertG2GM 

(Graph g)) 

 

 

-- Checking if a GraphMatrix is undirected 

isUndirectedGM (GraphMatrix gm) = (GraphMatrix gm) == gTransposeGM 

(GraphMatrix gm) 

 

 

-- Checking if a Graph is undirected 
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isUndirectedG (Graph g) = isUndirectedGM (convertG2GM (Graph g)) 

 

 

-- Checking if a GraphMatrix is directed 

isDirectedGM (GraphMatrix gm) = not $ isUndirectedGM (GraphMatrix 

gm) 

 

 

-- Checking if a Graph is directed 

isDirectedG (Graph g) = isDirectedGM $ (convertG2GM (Graph g)) 

 

 

-- Union of Graphs 

unionG (Graph g1) (Graph g2) = Graph ( 

 Vertices $ L.sort (L.union (vertices2list $ getVerticesG 

(Graph g1)) (vertices2list $ getVerticesG (Graph g2))),  

 Edges $ L.sort (L.union (edges2list $ getEdgesG (Graph g1)) 

(edges2list $ getEdgesG (Graph g2))) 

 ) 

 

 

-- Union of GraphMatrices 

unionGM (GraphMatrix gm1) (GraphMatrix gm2) = convertG2GM $ (unionG 

(convertGM2G (GraphMatrix gm1)) (convertGM2G (GraphMatrix gm2))) 

 

 

-- Adding vertices to Graph 

addVerticesG (Graph g) (Vertices v) = Graph ( 

 Vertices (L.union (vertices2list $ getVerticesG (Graph g)) 

(vertices2list $ Vertices v)),  

 getEdgesG (Graph g)) 

 

 

-- Adding vertices to GraphMatrix 

addVerticesGM (GraphMatrix gm) (Vertices v) = convertG2GM $ 

addVerticesG (convertGM2G (GraphMatrix gm)) (Vertices v) 

 

 

-- Extracting all vertices in Edges 

verticesInEdges (Edges e) = L.union (L.nub [first edge | edge <- 

edges2list (Edges e)]) (L.nub [second edge | edge <- edges2list 

(Edges e)]) 

 

 

-- Adding edges to Graph 

addEdgesG (Graph g) (Edges e) =  

 if (and [v `elem` vertices2list (getVerticesG (Graph g)) | v 

<- (verticesInEdges (Edges e))]) 
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 then Graph ( 

 getVerticesG (Graph g), 

 Edges (L.union (edges2list $ getEdgesG (Graph g)) (edges2list 

$ Edges e)) 

 ) 

 else error "Vertices in the edge(s) are not in the graph's set 

of vertices." 

 

 

-- Adding edges to GraphMatrix 

addEdgesGM (GraphMatrix gm) (Edges e) = convertG2GM $ addEdgesG 

(convertGM2G (GraphMatrix gm)) (Edges e) 

 

 

-- Checking if two vertices in GraphMatrix are connected 

areConnectedGM (GraphMatrix g) (Vertices v1) (Vertices v2) = 

 if ((mat2list' $ (mPower' (Matrix $ graph2matrix (GraphMatrix 

g)) (numVerticesGM (GraphMatrix g)))) !! ((v1!!0)-1) !! ((v2!!0))-1) 

/= 0 

 then True 

 else False 

 

 

-- Finding number of paths between two vertices in a GraphMatrix 

numPathsBetweenGM (GraphMatrix g) (Vertices v1) (Vertices v2) = 

 (((mat2list' $ (mPower' (Matrix $ graph2matrix (GraphMatrix 

g)) (numVerticesGM (GraphMatrix g)))) !! (((vertices2list (Vertices 

v1))!!0) - 1)) !! (((vertices2list (Vertices v2))!!0)  

 

- 1)) 

 

 

-- Finding nodes adjacent to a node in a Graph 

adjacentNodesG (Graph g) (Vertices v) = Vertices $ L.union [ second 

x | x <- edges2list $ getEdgesG (Graph g), (first x) == (v!!0) ] [ 

first y | y <- edges2list $ getEdgesG (Graph g),  

 

(second y) == (v!!0) ] 

 

 

-- Finding nodes adjacent to a node in a GraphMatrix 

adjacentNodesGM (GraphMatrix gm) (Vertices v) = adjacentNodesG 

(convertGM2G (GraphMatrix gm)) (Vertices v) 

 

 

-- In-degree of a vertex in a directed Graph 

inDegreeG (Graph g) (Vertices v) = length $ [ first y | y <- 

edges2list $ getEdgesG (Graph g), (second y) == (v!!0) ] 
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-- In-degree of a vertex in a directed GraphMatrix 

inDegreeGM (GraphMatrix gm) (Vertices v) = inDegreeG (convertGM2G 

(GraphMatrix gm)) (Vertices v) 

 

 

-- Out-degree of a vertex in a directed Graph 

outDegreeG (Graph g) (Vertices v) = length $ [ second y | y <- 

edges2list $ getEdgesG (Graph g), (first y) == (v!!0) ] 

 

 

-- Out-degree of a vertex in a directed GraphMatrix 

outDegreeGM (GraphMatrix gm) (Vertices v) = outDegreeG (convertGM2G 

(GraphMatrix gm)) (Vertices v) 

 

 

-- Degree of a vertex in an undirected Graph 

degreeG (Graph g) (Vertices v) = (inDegreeG (Graph g) (Vertices v)) 

+ (outDegreeG (Graph g) (Vertices v)) 

 

 

-- Degree of a vertex in an undirected GraphMatrix 

degreeGM (GraphMatrix gm) (Vertices v) = (inDegreeGM (GraphMatrix 

gm) (Vertices v)) + (outDegreeGM (GraphMatrix gm) (Vertices v)) 

 

 

-- Finding if a Graph contains a Euler Circuit 

hasEulerCircuitG (Graph g) = and [ even $ (degreeG (Graph g) 

(Vertices [v])) | v <- vertices2list $ getVerticesG (Graph g)] 

 

 

-- Finding if a GraphMatrix contains a Euler Circuit 

hasEulerCircuitGM (GraphMatrix gm) = hasEulerCircuitG (convertGM2G 

(GraphMatrix gm)) 

 

 

-- Finding if a Graph contains a Euler Path 

hasEulerPathG (Graph g) = hasEulerCircuitG (Graph g) 

 

 

-- Finding if a GraphMatrix contains a Euler Path 

hasEulerPathGM (GraphMatrix gm) = hasEulerCircuitGM (GraphMatrix gm) 

 

 

-- Finding number of vertices with odd degree 

countOddDegreeV (Graph g) = sum [ 1 | v <- vertices2list $ 

(getVerticesG (Graph g)), odd $ (degreeG (Graph g) (Vertices [v])) ] 
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-- Finding number of vertices with even degree 

countEvenDegreeV (Graph g) = sum [ 1 | v <- vertices2list $ 

(getVerticesG (Graph g)), even $ (degreeG (Graph g) (Vertices [v])) 

] 

 

 

-- Finding if a Graph conatains a Euler Path but not a Euler circuit 

hasEulerPathNotCircuitG (Graph g) = countOddDegreeV (Graph g) == 2 

 

 

-- Finding if a GraphMatrix contains a Euler Path but not a Euler 

circuit 

hasEulerPathNotCircuitGM (GraphMatrix gm) = hasEulerPathNotCircuitG 

(convertGM2G (GraphMatrix gm)) 

 

 

-- Finding if a Graph contains a Hamiltonian Circuit 

hasHamiltonianCircuitG (Graph g) = and [(degreeG (Graph g) (Vertices 

[v])) >= ((numVerticesG (Graph g)) `div` 2) | v <- vertices2list $ 

getVerticesG (Graph g), (numVerticesG (Graph g)) >= 3] 

 

 

-- Finding if a GraphMatrix contains a Hamiltonian Circuit 

hasHamiltonianCircuitGM (GraphMatrix gm) = hasHamiltonianCircuitG 

(convertGM2G (GraphMatrix gm)) 

 

 

-- Checking if a Graph is a subgraph 

isSubgraphG (Graph g1) (Graph g2) = (e1 `isSubset` e2) && (v1 

`isSubset` v2) 

 where 

  isSubset set1 set2 = null [e | e <- (L.sort . L.nub) 

set1, not (elem e ((L.sort . L.nub) set2))] 

  e1 = edges2list $ getEdgesG (Graph g1) 

  e2 = edges2list $ getEdgesG (Graph g2) 

  v1 = vertices2list $ getVerticesG (Graph g1) 

  v2 = vertices2list $ getVerticesG (Graph g2) 

 

 

-- Checking if a GraphMatrix is a subgraph 

isSubgraphGM (GraphMatrix gm1) (GraphMatrix gm2) = isSubgraphG 

(convertGM2G $ (GraphMatrix gm1)) (convertGM2G $ (GraphMatrix gm2)) 
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12.1.5 Prime Numbers 

module MPL.NumberTheory.Primes 

( 

 primesTo, 

 primesBetween, 

 nPrimes, 

 primesTo100, 

 trialDivision, 

 primesTo10000, 

 isTrialDivisionPrime, 

 isStrongPseudoPrime, 

 isMillerRabinPrime, 

 isPrime, 

 nextPrime, 

 primeFactors 

) 

where 

 

 

-- internal functions ---------------------- 

d `divides` n = n `mod` d == 0 

 

 

n `splitWith` p = doSplitWith 0 n 

 where doSplitWith s t 

  | p `divides` t = doSplitWith (s+1) (t `div` p) 

  | otherwise     = (s, t) 

 

 

power (idG,multG) x n = doPower idG x n 

 where 

  doPower y _ 0 = y 

  doPower y x n = 

   let y' = if odd n then (y `multG` x) else y 

       x' = x `multG` x 

       n' = n `div` 2 

   in doPower y' x' n' 

 

 

minus (x:xs) (y:ys) = case (compare x y) of  

           LT -> x : minus  xs  (y:ys) 

           EQ ->     minus  xs     ys  

           GT ->     minus (x:xs)  ys 

minus  xs     _     = xs 

 

 

primePowerFactors :: Integer -> [(Integer,Int)] 

primePowerFactors n | n > 0 = takeOutFactors n primesTo10000 

 where 

  takeOutFactors n (p:ps) 

   | p*p > n   = finish n 

   | otherwise = 

    let (s,n') = n `splitWith` p 
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    in if s > 0 then (p,s) : takeOutFactors n' ps 

else takeOutFactors n ps 

  takeOutFactors n [] = finish n 

  finish 1 = [] 

  finish n = 

   if n < 100000000 || isMillerRabinPrime n 

   then [(n,1)] 

   else error ("primePowerFactors: unable to factor " 

++ show n) 

 

 

sieve (p:xs)  

       | p*p > (last xs)   = p : xs 

       | otherwise = p : sieve (xs `minus` [p*p, p*p+2*p..]) 

---------------------------------------------- 

 

 

-- Generate list of primes upto specified limit by using Sieve of 

Eratosthenes 

primesTo :: Integer -> [Integer] 

primesTo 0 = [] 

primesTo 1 = [] 

primesTo 2 = [2] 

primesTo m = 2 : 3 : sieve [3,5..m] 

 

 

-- Generate all primes between two numbers (upper limit inclusive) 

primesBetween :: Integer -> Integer -> [Integer] 

primesBetween m n 

 | (m <= 2) = primesTo n 

 | otherwise = (primesTo n) `minus` (primesTo m)--(nextPrime m) 

: sieve [((nextPrime m)+1) .. n] 

 

 

-- Generate list of first 'n' primes 

nPrimes n = take n (sieve [2..]) 

 where sieve (p:ns) = p : sieve (filter (notdiv p) ns) 

       notdiv p n = n `mod` p /= 0 

 

 

-- List of prime numbers under 100 

primesTo100 :: [Integer] 

primesTo100 = 

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89

,97] 

 

 

-- Trial division 

trialDivision ps n = doTrialDivision ps 

 where doTrialDivision (p:ps) = let (q,r) = n `quotRem` p in if 

r == 0 then False else if q < p then True else doTrialDivision ps 

       doTrialDivision [] = True 

 

 

-- List of prime numbers under 10000 
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primesTo10000 = primesTo100 ++ filter (trialDivision primesTo100) 

[101,103..9999] 

 

 

-- Determine primality using trial division 

isTrialDivisionPrime 2 = True 

isTrialDivisionPrime n = trialDivision (primesTo10000 ++ 

[10001,10003..]) n 

 

 

-- Check if number is a pseudo-prime (probable) 

isStrongPseudoPrime :: Integer -> (Int,Integer) -> Integer -> Bool 

isStrongPseudoPrime n (s,t) b = 

 let b' = power (1, \x y -> x*y `mod` n) b t 

 in if b' == 1 then True else doSquaring s b' 

 where 

  doSquaring 0 x = False 

  doSquaring s x 

   | x == n-1  = True 

   | x == 1    = False 

   | otherwise = doSquaring (s-1) (x*x `mod` n) 

 

 

-- Check if number is prime using Miller-Rabin primality test 

isMillerRabinPrime :: Integer -> Bool 

isMillerRabinPrime n 

 | n < 100   = n `elem` primesTo100 

 | otherwise = all (isStrongPseudoPrime n (s,t)) primesTo100 

  where (s,t) = (n-1) `splitWith` 2 

 

 

-- Primality Checking which uses appropriate test according to the 

given number 

isPrime :: Integer -> Bool 

isPrime n 

 | n < 2          = False 

 | n < 500000000  = isTrialDivisionPrime n 

 | n >= 500000000 = isMillerRabinPrime n 

 

 

-- Generate the next prime greater than or equal to the given number 

nextPrime :: Integer -> Integer 

nextPrime n = head [p | p <- [n..], isPrime p] 

 

 

-- Prime factorization of a number 

primeFactors :: Integer -> [Integer] 

primeFactors n = concat (map (\(p,a) -> replicate a p) 

(primePowerFactors n)) 
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12.1.6 Matrices 

module MPL.LinearAlgebra.Matrix 

( 

 Matrix(..), 

 mAdd, 

 mAddL, 

 (|+|), 

 mSub, 

 (|-|), 

 mTranspose, 

 mScalarMult, 

 (|*|), 

 mMult, 

 mMultL, 

 (|><|), 

 numRows, 

 numCols, 

 mat2list, 

 determinant, 

 inverse, 

 mDiv, 

 (|/|), 

 extractRow, 

 extractCol, 

 extractRowRange, 

 extractColRange, 

 mPower, 

 trace, 

 isInvertible, 

 isSymmetric, 

 isSkewSymmetric, 

 isRow, 

 isColumn, 

 isSquare, 

 isOrthogonal, 

 isInvolutive, 

 isZeroOne, 

 isZero, 

 isOne, 

 isUnit, 

 mMap, 

 zero, 

 zero', 

 one, 

 one', 

 unit 

) 

where 

 

import qualified Data.List as L 

 

 

newtype Matrix a = Matrix [[a]] deriving (Eq) 
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instance Show a => Show (Matrix a) where 

 show (Matrix a) = L.intercalate "\n" $ map (L.intercalate "\t" 

. map show) a 

 

 

-- Matrix addition 

mAdd :: Num a => Matrix a -> Matrix a -> Matrix a 

mAdd (Matrix a) (Matrix b) = Matrix $ zipWith (zipWith (+)) a b 

 

 

(|+|) (Matrix a) (Matrix b) = mAdd (Matrix a) (Matrix b) 

 

 

-- Adding a list of matrices 

 

mAddL :: Num a => [Matrix a] -> Matrix a 

mAddL m = foldl1 (mAdd) m 

 

 

-- Matrix subtraction 

mSub :: Num a => Matrix a -> Matrix a -> Matrix a 

mSub (Matrix a) (Matrix b) = Matrix $ zipWith (zipWith (-)) a b 

 

 

(|-|) (Matrix a) (Matrix b) = mSub (Matrix a) (Matrix b) 

 

 

-- Subtracting a list of matrices 

mSubL :: Num a => [Matrix a] -> Matrix a 

mSubL m = foldl1 (mSub) m 

 

 

-- Matrix transposition 

mTranspose :: Matrix a -> Matrix a 

mTranspose (Matrix []) = (Matrix []) 

mTranspose (Matrix [[]]) = (Matrix [[]]) 

mTranspose xs = Matrix $ foldr (zipWith (:)) (repeat []) (mat2list 

xs) 

 

 

-- Multiplication by a scalar 

mScalarMult :: Num a => a -> Matrix a -> Matrix a 

mScalarMult x (Matrix m) = Matrix $ map (map (x*)) m 

 

 

(|*|) x (Matrix m) = mScalarMult x (Matrix m) 

 

 

-- Matrix multiplication 

mMult :: Num a => Matrix a -> Matrix a -> Matrix a 

mMult (Matrix m1) (Matrix m2) = Matrix $ [ map (multRow r) m2t | r 

<- m1 ] 

 where  

  (Matrix m2t) = mTranspose (Matrix m2) 

  multRow r1 r2 = sum $ zipWith (*) r1 r2 
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(|><|) (Matrix a) (Matrix b) = mMult (Matrix a) (Matrix b) 

 

 

-- Multiplying a list of Matrices 

mMultL :: Num a => [Matrix a] -> Matrix a 

mMultL m = foldl1 (mMult) m 

 

 

-- Finding number of rows 

numRows :: Num a => Matrix a -> Int 

numRows (Matrix a) = length a 

 

 

-- Finding number of columns 

numCols :: Num a => Matrix a -> Int 

numCols (Matrix a) = numRows (mTranspose (Matrix a)) 

 

 

-- Finding coordinates/position of an element 

coords :: Num a => Matrix a -> [[(Int, Int)]] 

coords (Matrix a) = zipWith (map . (,)) [0..] $ map (zipWith const 

[0..]) a 

 

delmatrix :: Num a => Int -> Int -> Matrix a -> Matrix a 

delmatrix i j (Matrix a) = Matrix $ dellist i $ map (dellist j) a 

 where 

  dellist i xs = take i xs ++ drop (i + 1) xs 

 

-- Converting a Matrix into a list 

mat2list :: Matrix a -> [[a]] 

mat2list (Matrix m) = m 

 

 

-- Calculating determinant of a matrix 

--determinant :: [[Double]] -> Double 

--determinant :: Matrix a -> Double 

determinant (Matrix m) 

 | numRows (Matrix m) == 1 = head (head m) 

 | otherwise    = sum $ zipWith addition [0..] m 

 where 

  addition i (x:_) =  x * cofactor i 0 (Matrix m) 

 

 

-- Calculating cofactor 

cofactor :: Int -> Int -> Matrix Double -> Double 

cofactor i j (Matrix m) = ((-1.0) ** fromIntegral (i + j)) * 

determinant (delmatrix i j (Matrix m)) 

 

 

-- Calculating minors 

cofactorM :: Matrix Double -> Matrix Double 

cofactorM (Matrix m) = Matrix $ map (map (\(i,j) -> cofactor j i 

(Matrix m))) $ coords (Matrix m) 
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-- Matrix inversion 

inverse :: Matrix Double -> Matrix Double 

inverse (Matrix m) = Matrix $ map (map (* recip det)) $ mat2list $ 

cofactorM (Matrix m) 

 where 

  det = determinant (Matrix m) 

 

 

-- Matrix division 

mDiv :: Matrix Double -> Matrix Double -> Matrix Double 

mDiv (Matrix a) (Matrix b) = mMult (Matrix a) (inverse (Matrix b)) 

 

 

(|/|) (Matrix a) (Matrix b) = mDiv (Matrix a) (Matrix b) 

 

 

-- Extract particular row of a matrix 

extractRow :: Matrix a -> Int -> [a] 

extractRow (Matrix m) n = m !! n 

 

 

-- Extract particular column of a matrix 

extractCol :: Matrix a -> Int -> [a] 

extractCol (Matrix m) n = (mat2list (mTranspose (Matrix m))) !! n 

 

 

-- Extract range of rows from a matrix 

extractRowRange :: Matrix a -> Int -> Int -> Matrix a 

extractRowRange (Matrix m) a b = Matrix [extractRow (Matrix m) i | i 

<- [a..b]] 

 

 

-- Extract range of columns from a matrix 

extractColRange :: Matrix a -> Int -> Int -> Matrix a 

extractColRange (Matrix m) a b = Matrix [extractCol (Matrix m) i | i 

<- [a..b]] 

 

 

-- Power of a matrix 

--mPower :: Num a => Matrix a -> Int -> Matrix a 

mPower (Matrix matrix) exp = 

 if (exp < 0) 

 then mPower (inverse (Matrix matrix)) (-exp) 

 else 

  if(exp == 0) 

  then error "Exponent must be non-zero." 

  else 

   if (exp == 1) 

   then (Matrix matrix) 

   else 

    mMult (Matrix matrix) (mPower (Matrix matrix) 

(exp-1)) 

 

 

-- Trace of a matrix 
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trace (Matrix m) = sum [(extractRow (Matrix m) r) !! c | r <- [0 .. 

((numRows (Matrix m)) - 1)], c <- [0 .. ((numCols (Matrix m)) - 1)], 

r == c] 

 

 

-- Invertibility 

--isInvertible :: Num a => Matrix a -> Bool 

isInvertible (Matrix m) = (determinant (Matrix m)) /= 0 

 

 

-- Is it symmetric? 

--isSymmetric :: Eq a => Matrix a -> Bool 

isSymmetric (Matrix m) = (Matrix m) == mTranspose (Matrix m) 

 

 

-- Is it anti/skew-symmetric? 

--isSkewSymmetric :: Eq a => Matrix a -> Bool 

isSkewSymmetric (Matrix m) = (Matrix m) == mScalarMult (-1) 

(mTranspose (Matrix m)) 

 

 

-- Is it a row matrix? 

--isRow :: Ord a => Matrix a -> Bool 

isRow (Matrix m) = (numRows (Matrix m) == 1) 

 

 

-- Is it a column matrix? 

--isColumn :: Ord a => Matrix a -> Bool 

isColumn (Matrix m) = (numCols (Matrix m) == 1) 

 

 

-- Is it a square matrix? 

--isSquare :: Ord a => Matrix a -> Bool 

isSquare (Matrix m) = (numRows (Matrix m) == numCols (Matrix m)) 

 

 

-- Orthogonality 

--isOrthogonal :: Eq a => Matrix a -> Bool 

isOrthogonal (Matrix m) = (mTranspose (Matrix m) == inverse (Matrix 

m)) 

 

 

-- Is it an involutive matrix? 

--isInvolutive :: Eq a => Matrix a -> Bool 

isInvolutive (Matrix m) = ((Matrix m) == inverse (Matrix m)) 

 

 

-- Is it a 0/1 Matrix? 

--isZeroOne :: Ord a => Matrix a -> Bool 

isZeroOne (Matrix m) = and [(((m!!r)!!c) == 0) || (((m!!r)!!c) == 1) 

| r <- [0..((numRows (Matrix m)) - 1)], c <- [0..((numCols (Matrix 

m)) - 1)]] 

 

 

-- Is it a zero matrix? 

--isZero :: Ord a => Matrix a -> Bool 
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isZero (Matrix m) = and [(m!!r)!!c == 0 | r <- [0..((numRows (Matrix 

m)) - 1)], c <- [0..((numCols (Matrix m)) - 1)]] 

 

 

-- Is it a one matrix? 

--isOne :: Ord a => Matrix a -> Bool 

isOne (Matrix m) = and [(m!!r)!!c == 1 | r <- [0..((numRows (Matrix 

m)) - 1)], c <- [0..((numCols (Matrix m)) - 1)]] 

 

 

-- Is it a unit matrix? 

--isUnit :: Eq a => Matrix a -> Bool 

isUnit (Matrix [[]]) = False 

isUnit (Matrix [[1]]) = True 

isUnit (Matrix m) = and ([isSquare (Matrix m)] ++ [isOrthogonal 

(Matrix m)] ++ [isSymmetric (Matrix m)] ++ [trace (Matrix m) == 

fromIntegral (numRows (Matrix m))]) 

 

 

-- Mapping a function to a matrix 

mMap f (Matrix m) = Matrix $ map (map f) m 

 

 

-- Generate special matrices 

 

-- Temp function (converts list to n-row matrix) 

chunk' n = takeWhile (not.null) . map (take n) . iterate (drop n) 

 

 

-- NxN 0 matrix 

zero n = Matrix $ chunk' n (take (n*n) $ repeat 0) 

 

 

-- MxN 0 matrix 

zero' m n = Matrix $ chunk' m (take (m*n) $ repeat 0) 

 

 

-- NxN 1 matrix 

one n = Matrix $ chunk' n (take (n*n) $ repeat 1) 

 

 

-- MxN 1 matrix 

one' m n = Matrix $ chunk' m (take (m*n) $ repeat 1) 

 

 

-- NxN unit matrix 

unit n = Matrix $ chunk' n (L.intercalate (take n $ repeat 0) 

(mat2list (one' 1 n))) 
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12.1.7 Combinatorics 

module MPL.Combinatorics.Combinatorics 

( 

 factorial, 

 c, 

 p, 

 permutation, 

 shuffle, 

 combination 

) 

where 

 

import Data.List as L 

import System.Random 

import Control.Applicative 

 

 

-- Factorial function 

factorial :: Integer -> Integer 

factorial n 

 | (n == 0) = 1 

 | (n > 0) = product [1..n] 

 | (n < 0) = error "Usage - factorial n, where 'n' is non-

negative." 

 

 

-- nCr 

c :: Integer -> Integer -> Integer 

c n r = (factorial a) `div` ( (factorial b) * (factorial (a-b)) ) 

 where 

 a = max n r 

 b = min n r 

 

 

-- nPr 

p :: Integer -> Integer -> Integer 

p n r = (factorial a) `div` (factorial (a-b)) 

 where 

 a = max n r 

 b = min n r 

 

 

-- Permutation generation function 

permutation :: [a] -> [[a]] 

permutation x = L.permutations x 

 

 

-- Random permutation generation - Fisher-Yates shuffle algorithm 

shuffle :: [a] -> IO [a] 

shuffle l = shuffle' l [] 

 where 

  shuffle' [] acc = return acc 

  shuffle' l acc = 

   do 
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    k <- randomRIO (0, (length l) - 1) 

    let (lead, x:xs) = splitAt k l 

    shuffle' (lead ++ xs) (x:acc) 

 

 

-- Generating combination (n at a time, with repetition) 

 

prod as bs = (++) <$> as <*> bs 

 

combination n as = foldr1 prod $ replicate n as 

 

 

12.2 Preprocessor 

12.2.1 Bash Script 

#! /usr/bin/sh 

# preprocess.sh 

 

sed -f script $2 > $3 

 

 

12.2.2 sed Script 

# sed script for substituting text according to MPL's syntax 

# Filename: script 

# Author  : Rohit Jha 

# Version : 0.1 (24 Jan 2013) 

 

s/Set[\n\t ]{/Set [/g; 

s/Relation[\n\t ]{/Relation [/g; 

s/Vector[\n\t ]</Vector [/g; 

s/Edges[\n\t ]{/Edges [/g; 

s/Vertices[\n\t ]{/Vertices [/g; 

 

s/[\n\t ]}/]/g; 

s/[\n\t ]>/]/g; 

 

 


