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ABSTRACT OF THE THESIS

Synthesizing Loop Invariants Through a Multiplayer Game

by

Rohit Jha

Master of Science in Computer Science

University of California, San Diego, 2017

Professor Sorin Lerner, Chair

Human computation and crowdsourcing have been successfully proposed and

applied to solve problems that are difficult to solve due to either the limitations of current

computing technology or the existence of only a few experts. A common way to solve

problems through human computation and crowdsourcing systems is to convert them into

interactive games that target a wide audience of non-experts. Leveraging humans’ innate

ability to recognize patterns, a few systems have solved the problem of synthesizing loop

invariants through single-player puzzle games.

This thesis proposes to apply human computation to synthesize loop invariants

by having non-experts play a multiplayer game. We explain the challenges involved in

xi



designing such games and explore the advantages multiplayer games offer over single-

player games in terms of players’ efficiency of solving problems and the amount of fun

they have.
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Chapter 1

Introduction

1.1 Human Computation

Luis von Ahn [54] defined human computation as the paradigm of utilizing hu-

mans to solve problems that computers cannot solve yet. By treating human brains as

processors in a distributed system, where each performs a small unit of computation,

complex problems can be solved. Researchers have subsequently adapted human compu-

tation to target problems that computers cannot efficiently solve, and may require both

humans and machines.

One of the first human computation systems, reCAPTCHA’s objective is to

actually translate books [55][61], with a side-effect of being used as a security measure.

Words that cannot be scanned by an optical character recognition (OCR) software are

sent to the reCAPTCHA servers, where each such word is distorted and paired with the

original word’s image. These words are then served to users to be recognized until a

consensus is reached on the correct answer.

Since an increasing part of the global population has access to the Internet,

von Ahn proposed using online games in order to encourage participation in human
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computation systems, and demonstrated how games could be used to correctly identify

objects in images [60], annotate images with description [58], and collect common-

sense knowledge from humans as training data for reasoning algorithms [59]. von

Ahn emphasized that people play games to be entertained and not because they are

interested in solving a small unit of a computational problem [57]. However, the success

of studies such as FoldIt [9] and SETI@Home [1] suggests that players are also drawn to

games where they can play the roles of citizen-scientists by contributing to complex and

interesting problems.

Nevertheless, the greatest challenge to design games that aim to solve difficult

problems is keeping the games enjoyable for a wide audience. In order to design such

games, the following need to be achieved [29]:

• Identification of tasks which can and cannot be performed efficiently by machines

• Decomposition of complex tasks into relatively small units of computation

• Combining these small units into an entertaining game

• Providing people incentive to have a long-term interaction with the game

• Obtaining relevant and correct results from a vast collection of players’ responses

1.2 Games With A Purpose

Games With A Purpose (GWAP) are human computation systems in the form of

games wherein people perform tasks computers are unable to perform but as a side-effect

of playing [57]. Therefore, for GWAP, the challenge of attracting and retaining players

is even more critical since the focus is on entertainment. To achieve this, the game

designers must abstract away the underlying domain-specific concepts and jargon, while

still prodding the players towards finding correct solutions.
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According to the 2017 report on Essential Facts About the Computer and Video

Game Industry by the Entertainment Software Association (ESA) [51], nearly two-thirds

of US households are home to at least one person who plays three or more hours of

games per week. Of the most frequent gamers, 53% engage in online multiplayer games,

averaging 11 hours of multiplayer gameplay every week. These statistics indicate that

players enjoy competing and collaborating with other players, which can be leveraged by

GWAP that offer a multiplayer mode.

1.3 Crowdsourcing

Jeff Howe coined the term crowdsourcing to define tasks that are usually per-

formed by an expert, but which can be outsourced to a large group of (possibly non-expert)

people as an open call [26]. The most prominent crowdsourcing platform today is the

Amazon Mechanical Turk [2], where a demographically diverse set of participants can

be recruited rapidly and inexpensively.

The difference between human computation and crowdsourcing is that in a

crowdsourced system the contributors are typically compensated with monetary rewards,

whereas players in human computation systems, such as GWAP, play for entertainment.

However, crowdsourcing and human computation are not disjoint systems – tasks that

can be performed by either a computer or an expert human lie at the intersection, and can

be converted into entertaining games.

1.4 Thesis Statement

In formal program verification, loop invariants are typically expressed using

predicate logic and are used to prove the correctness of loops and the algorithms that
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employ loops. Traditionally, finding loop invariants is the responsibility of either the

verification engineer, or the programmer writing the loop. However, it is a challenging

task, mentally and economically, to manually find and annotate all the loop invariants of

new or existing programs. As a result, this has led to the development of several automated

tools and techniques for discovering loop invariants [16][17][21][27][28][46][47]. The

other approach to find loop invariants is through human computation and crowdsourcing

systems using games, such as CrowdMine [31] and Xylem [35], which convert the

problem of finding loop invariants into single-player games.

My thesis is that a hybrid collaborative-competitive multiplayer online game is

better than a single-player game for synthesizing loop invariants since it can:

1. generate loop invariants for problems which an individual may find difficult to

solve alone

2. generate loop invariants with better throughput, and

3. be more engaging and entertaining

The notion behind the collaborative aspect is to help players find a higher number

of loop invariants to quickly achieve the shared goal of solving a problem by building on

top of each others’ found invariants. The competitive aspect of the game is to motivate

players to perform better than their peers by finding stronger and more number of loop

invariants, especially since they can compare their progress against others during their

games.

1.5 Thesis Contributions

Following are the contributions of this thesis:
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1. Demonstrating the advantages of applying human computation in the form of

multiplayer games to solve the problem of synthesizing loop invariants

2. Corroborating the benefits of hybrid collaborative-competitive multiplayer games

over single-player games to solve difficult problems

3. Exploring the challenges faced while designing such multiplayer games, and some

techniques to overcome these challenges

1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 explains the

challenges, architecture and game design of the multiplayer game. Chapter 3 covers the

details of the experiment and results obtained. Chapter 4 briefly explains a few games

that share the same objective of generating loop invariants, and compares them with our

multiplayer game. Chapter 5 concludes the thesis with a few potential future works.



Chapter 2

A Multiplayer Game for Loop

Invariant Synthesis

2.1 Challenges

In this section, we explore the challenges encountered while designing a multi-

player game for generating loop invariants as a GWAP. We provide examples of how we

addressed those challenges with the details explained later in section 2.3.

2.1.1 Non-Experts as Players

As is the case with many human computation systems, the target users are

assumed to have no prior experience knowledge of the domain [57]. In our multiplayer

game, we abstract away from the players details about the source code, loops and loop

invariants, while still conveying to them that the objective is to synthesize loop invariants.

For example, one way in which we address this is to avoid the term loop invariant and

instead use the term expression. Also, we do not expose the source code to any player,

which makes our game suitable to find loop invariants in proprietary software.

6
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2.1.2 Visual Interface

A key challenge in designing any game is to make the interface visually appealing

to the players. In our game, we provide a minimal interface that is easy for players

to navigate and to comprehend features at a glance. To ensure that players understand

the game’s interface, we walk the players through a short tutorial where the interface

components are revealed and their roles explained, one at a time.

2.1.3 Feedback

To maintain players’ engagement in a game, a good way is to provide feedback

by awarding players points for finding correct solutions. In our multiplayer game we not

only add points to players’ score for finding new invariants, but we also award bonus

points for stronger invariants. Players get feedback on their invariants’ validity almost

instantly and this ensures that the game’s pace is not slowed.

2.1.4 Player Efficiency

A simple measure of players’ efficiency is throughput, which is the number of

correct answers they provide per unit time. We employ the use of a scoreboard in every

game and a global leaderboard to provide a sense of competition to the players. Besides

allowing players to keep track of their performance and their standing relative to that

of other players, we expect this to motivate them to outperform their peers by finding

more invariants faster. To persuade players to generate a variety of invariants, we provide

players with power-ups (which change in their strength as the game progresses) if they

do not repeat similar invariants.
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2.1.5 Scalability

Our multiplayer game needs to be able to handle a large number of concurrent

players without any adverse impact on latency. Besides verifying each player’s inputs,

which is computationally intensive, the implementation at the client and server-sides

should support frequent or real-time synchronization of loop invariants found by all the

players in every game. To handle this challenge, our architecture handles a large number

of players by potentially scaling to multiple load-balanced server instances. The details

are explained in section 2.2.

2.1.6 Quality of Loop Invariants

In our multiplayer game, we refrain from having a time limitation or ranking play-

ers based on their speed during the game as we want players to provide well-considered

responses, with the expectation that this leads to better loop invariants. Additionally, we

reward players with bonus points for finding invariants that are stronger than one or more

previously found invariants, which are visible to all players in the game. A loop invariant

p can be said to be stronger than another loop invariant q if p < q and p⇒ q, i.e. if p is

not equivalent to q then whenever p holds true, q also holds true. For example, if p is the

invariant y = 3 and q is the invariant y > 0, then we can see that if y is equal to 3, then

y is greater than 0, i.e. y = 3⇒ y > 0 and therefore p is a stronger loop invariant than

q. If we do not check for equivalence, then players could enter a valid invariant y > 0

repeatedly and get bonus points since y > 0⇒ y > 0. However, since y > 0⇔ y > 0,

players will be alerted that their provided invariant is equivalent to an invariant already

found.
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2.1.7 Player Enjoyment

Perhaps the most important challenge for designing a GWAP is the amount of

enjoyment it provides players with. In [52], the authors explain a model for evaluating

players’ enjoyment which includes the following elements:

1. Concentration: Games should have a high workload, within appropriate levels of

players’ perceptual, cognitive and memory limits. They should quickly grab the

players’ attention and maintain focus for as long as possible.

2. Challenge: Games should provide challenges to match players’ skill levels.

3. Player skills: Games must provide tutorials and in-game help to assist players learn

easily and have fun at the same time.

4. Clear goals: Games should have a clear objective that is immediately apparent to

players.

During the tutorials, we explain to the players that their objective is to find

expressions (loop invariants) to solve a puzzle and increase their score to move to the top

of the scoreboard. Players can understand the operators available to them and also revisit

the tutorials at a later stage through the in-game help. As explained later in section 2.3,

we have designed the interface such that players focus on the traces and are alerted, only

when necessary, to events occurring in the game such as an increase in their score, a new

player joining the game and a new expression being found.

2.2 Architecture

The game has a client-server architecture, as shown in Figure 2.1. Players connect

to the server through their browser and all their requests to the server are handled by nginx,
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which acts a high-performance web server and reverse proxy [44]. Since low latency and

high scalability are paramount in a multiplayer game, routing requests through nginx

reduces communication overhead and improves handling of a high number of concurrent

requests without burdening hardware resources [40].

Figure 2.1: Architecture diagram of the multiplayer game

The nginx server forwards HTTP requests for dynamic content to the Flask micro

web framework [23], which provides a RESTful API implementation for the multiplayer

game. Although our current implementation involves a single Flask instance, we can

run multiple Flask instances on one or more commodity servers and have nginx act as a

load-balancer to increase scalability and performance.

Each Flask instance maintains a key-value store to synchronize the states of games

and communicate the same to all players at fixed intervals of time. This key-value is

currently implemented as a Python dictionary, but it can be an in-memory database such

as Redis to boost read and write performances [3]. Each game has a unique, randomly-

generated game identifier gameId, which acts as the key in this key-value store. The

value corresponding to every gameId has the format shown in Figure 2.2

The request from every player includes the gameId and the server responds with
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{
"players": [

{
"id": "<id>",
"score": <score>

},
{

"id": "<id>",
"score": <score>

},
...

]
"expressions": {

"<levelId>": [
{"<invariant>": "<HTML representation>"},
{"<invariant>": "<HTML representation>"},
...

],
"<levelId>": [

{"<invariant>": "<HTML representation>"},
{"<invariant>": "<HTML representation>"},
...

],
...

}
}

Figure 2.2: Key-value store format to store a game’s state

the value corresponding to this gameId in the key-value store. The synchronization logic

is implemented on the client-side in JavaScript to reduce the load on the server, and the

pseudocode is shown in Figure 2.3.

This synchronization logic is implemented as a JavaScript function on the client-

side which executes at frequent intervals (currently every 1 second). If a player’s local

state, which is a copy of the current gameId’s value, is not equal to the server’s state

for the same gameId, then the new players and the new expressions found by all the

other players are merged into the player’s local state. Executing this function at frequent
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localState← getLocalState()

serverState← getServerState(gameId)

if localState 6= serverState then

localPlayers← mergePlayers(localState, serverState)

localExpressions← mergeExpressions(localState, serverState)

localState← (localPlayers, localExpressions)

updateServerState(gameId, localState)

Figure 2.3: Synchronizing a player’s state with the server

intervals may cause a 1-2 second latency for a player’s recently found expression to be

visible to all other players, but future versions can provide a real-time experience by

using the WebSocket protocol to communicate changes in states instead of sending the

entire state snapshot over HTTP [7][42].

Currently every level of the game also exists as a Boogie program on the server

[6][14][30]. We extract environment information from these programs (such as variable

names and values), combine it with the expressions provided by players then use the Z3

SMT solver [11] to verify if these expressions are loop invariants. If yes, then the players

are notified and the expressions are added as loop invariants.

2.3 Game Design

After signing in to the game, players are directed to a landing page which lists

their username, total points scored so far and their current rank on the leaderboard (Figure

2.4). From the “How To Play” section, players can launch the multiplayer tutorial and

then head to the “Play” section to either start a new game or join an existing game, if

any (Figures 2.5 and 2.6). Players can view the global leaderboard by clicking on the

“Leaderboard” tab, as shown in Figure 2.7.
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Figure 2.4: Players’ landing page after signing in

Figure 2.5: Players can either start a new multiplayer game or join an existing game

Figure 2.6: Players can join an existing game by selecting it from a list or by entering a
known Game ID

Figure 2.7: The global leaderboard
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Figure 2.8: The multiplayer game’s interface

2.3.1 Game Interface and Play

Once players start or join a game, the game’s interface visible to them is the one

shown in Figure 2.8. The various components of the game’s interface are:

1. Trace data and input: Trace data from loops are shown in a tabular form with

variable names as column headings and each row showing the value help by all

variables in an iteration. As shown in Figure 2.9, a textbox allows players to type

their expressions (loop invariants) and view the results of their expressions for

every iteration instantly. In case the entered expression is not a loop invariant,

the rows corresponding to the iterations where the expression does not hold are

highlighted in red. In addition, a message under the textbox explains to the player

why the expression is not acceptable. If the expression entered by the player is a

loop invariant, the message instead reads “Press enter...” in green.
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Figure 2.9: A player trying an expression

2. Accepted expressions: When players press enter after finding a loop invariant,

their expressions is added to the list of accepted expressions and made visible

to all players. When an expression found by any player appears as an accepted

expression, players are notified by a visual pop-up accompanied by an audio alert.

3. Bonus: To encourage players to find more expressions, players are provided with

bonus points for using different operators, variables and constants through various

power-ups. The strength of these power-ups increases the longer they are not

applicable for accepted expressions. For example, not using an inequality operator

will increase its strength from 2 to 4 when the player attempts to find the next

expression. To help players understand the effect, players are alerted when the

power-up is applied or when the strength changes. Another bonus available to

players is that they are awarded 10 points when they find an expression stronger



16

than one or more existing accepted expressions found by any of the players. The

basis of determining whether an expression is stronger than another is explained in

Section 2.1.6.

In Figure 2.8, the Bonus section on the left lists the available power-ups and their

current strengths: 6 times as many points for not using a constant, 6 times as many

points for using an inequality operator, 2 times as many points for using equality, 6

times as many points for using either the multiplication or division operators, 6

times as many points for using the addition or subtraction operators, and 6 times as

many points for using the modulus operator.

4. Player score and scoreboard: Towards the top-right of the screen are the player’s

current score and a scoreboard ranking players in the current game according to

their scores.

5. Help section: Towards the bottom of the screen is the help section which players

can access at any point while playing the game. Clicking on an operator shows the

player the description of the operator and examples to help understand how to use

it (Figure 2.10). Clicking on “Tutorial” shows an option to either replay the entire

tutorial, replay the part explaining how to use “if” in expressions, or watch a video

of the tutorial explaining the use of “if”.

Figure 2.10: Help menu showing description of the modulus operator

Each game is composed of multiple levels, not organized in any order since it is

difficult to predict the amount of effort that will be required to solve a level. In order to
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Figure 2.11: Players can launch the tutorial from the game

keep players engaged, we allows players to skip to the next level when at least six loop

invariants have been found at a level. Such levels are marked as “completed” but not

solved. A level is marked “solved” when the Z3 SMT solver returns that the given set of

loop invariants are sufficient to solve the equivalent Boogie program. Once a player has

completed a level, they proceed to the next level while the other players at the same level

see a button “Skip to Next Level” appear at the bottom of their screen. They can then

choose to continue finding stronger expressions or proceed to the next level.



Chapter 3

Evaluation

3.1 Methodology

We randomly divided 14 participants into two groups of seven players each and

had them all play the single- and multiplayer versions of the game for 30 minutes each. To

counterbalance order effects, we had the players in the first group play the single-player

game followed by the multiplayer game in groups of two or three players. We then had

the players in the second group play the multiplayer game followed by the single-player

game. In each of these games, players were geographically distributed and were unaware

of other players’ identities, preventing any inadvertent collaboration or cheating. At the

end of each game we had the players answer a short survey about their playing experience,

and a final survey after playing both games. We describe the results of these surveys and

our findings in the next section.

3.2 Results

For all the single- and multiplayer games, we measured the following:

18
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1. the number of levels completed

2. player efficiency in terms of the average time taken to complete levels, the average

time taken to find loop invariants, etc.

3. fun and engagement as reported by players

3.2.1 Levels Completed

We measured how many players could complete each level during all the games

and show the results in Figure 3.1.

Figure 3.1: Number of players completing each level

Figure 3.1 shows that during both the single- and multiplayer games, all players

could complete levels 1 and 2, but it became easier to complete levels 3-9 in the multi-

player version. Levels 10 and 11 were solved by three players in both versions, but levels

12-14 could only be solved in the multiplayer version. These results indicate that more

problems could be solved through multiplayer games than single-player games in the

same amount of time.
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Table 3.1: Players’ efficiency for single-player games and multiplayer games involving
two or three players

Single-Player Two-Player Three-Player
#Levels solved 2 3 7
Avg. #levels completed 5.286 6.125 8.833
Avg. #invariants found per player 28.571 40.625 45.5
Avg. #invariants found per level by
each player

5.674 6.81 5.188

Avg. time per level (s) 364.03 289.686 216.112
Avg. time to find an invariant per
player (s)

72 41.865 41.77

3.2.2 Player Efficiency

To determine how players’ efficiency varies between single- and multiplayer

games, we measured a few indicators that are listed in Table 3.1.

In case of the two and three-player versions of the multiplayer game, players

were able to complete 3 and 7 levels out of a total of 14 levels, as compared to the single-

player game, where only 2 levels were solved. We can see that for the same duration

of play, 15.87% more levels were completed with two players and 67.1% more levels

with three players as compared to the single player games. Also, the average number

of loop invariants found by players rises significantly in multiplayer games – 42.19%

more invariants with two players and 59.25% more invariants with three players. Even

though the average number of loop invariants found per player increases in multiplayer

games, the average number of invariants found per level by each player reduces when

the number of players increases from two to three. The reason for this could be because

the contribution of each player to solve a level become smaller as the number of players

increases.

In case of a two-player game, the average time to solve a level drops to 79.58% of

the time to solve a level in single-player game. This time drops to 59.37% in a multiplayer
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game with three players, suggesting that having more players is beneficial to quickly

solve problems. Furthermore, in case of multiplayer games with two and three players,

the average time to find an invariant by a player drops to 58.15% and 58% of the time

taken during single player games, respectively.

Figure 3.2: Average number of levels completed when playing the single- or multiplayer
version first

Figure 3.3: Average number of invariants found when playing the single- or multiplayer
version first

As we can see from Figure 3.2, the participants who played the single-player



22

version before playing the multiplayer version completed an average of approximately 4

levels and participants who played the multiplayer version first completed more than 9

levels on average. To understand the effect on number of invariants found by players,

we compare the results in Figure 3.3. Participants playing the single-player game first

found an average of 24.571 invariants while participants playing the multiplayer game

first found an average of 48.571 invariants, which is nearly twice as many. An interesting

observation is that, in both these cases, participants who played the multiplayer version

first performed better during the single-player version than players who played the

single-player version first.

Not only did players playing the multiplayer game first find a larger number of

invariants and solve more levels than players playing the single-player game first, but they

also did so more efficiently. We can see from Figures 3.4 and 3.5 that participants spent

nearly half the time per level (204 seconds) when playing the multiplayer game first, as

compared to participants who played the single-player game first. While the collaborative

aspect of the game can explain the reduction in time, it does not explain the observation

that players switching from the single-player to multiplayer game took longer to solve

a level on average. This effect is less pronounced when looking at the average time to

find an invariant. Participants playing the multiplayer game took approximately the same

time in each of the versions irrespective of the order or playing, as discussed above.

3.2.3 Fun and Engagement

Based on the heuristics for evaluating games designed for enjoyment, we mea-

sured how much fun players had while playing, the amount of challenge they faced

and the focus the game required of them [36][37]. We asked every player after their

single- and multiplayer games how much fun they had on a five-point Linkert scale,

with 1 standing for “No fun at all” and 5 for “A lot of fun”. We also asked players how
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Figure 3.4: Average time spent per level by each player

Figure 3.5: Average time spent to find an invariant by each player

challenging they found their games and how much they had to focus while playing on

similar five-point Linkert scales. Figure 3.6, 3.7 and 3.8 show the players’ responses.

As we can see from Figures 3.6 and 3.7, players had more fun playing the

multiplayer version and faced a higher challenge playing it, which can be attributed to the

competitive nature of the game. Even though the level of focus/concentration required

during the single- and multiplayer games was not the same for every player, the number
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Figure 3.6: Players’ reported levels of fun during the single- and multiplayer games

Figure 3.7: Players’ reported levels of challenge felt during the single- and multiplayer
games

of players reporting each level turned out to be equal. Some players may not have had

to focus as much during the multiplayer game to solve a level since collaboration with

additional players made the task easier. However, some players who reported a higher
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Figure 3.8: Players’ reported levels of concentration during the single- and multiplayer
games

level of concentration required in their multiplayer games could have felt this due to the

competition with other players.

Figure 3.9: Players’ reported levels of fun, challenge and concentration during the
single- and multiplayer games and the version they prefer to play again

When players had finished playing both the single- and multiplayer games, we
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asked them which version they enjoyed playing more, which version they found more

challenging, and in which version they had to focus more. Figure 3.9 shows that 85.7% or

12 out of 14 players enjoyed playing the multiplayer version more than the single-player

version, 71.4% felt that the multiplayer version was more challenging and 85.7% players

had to focus more during the multiplayer game. We also asked players which version of

the game they would prefer playing again in this case too 85.7% reported that they would

prefer the multiplayer game.

3.2.4 Player Demographics

To understand the skills possessed by players, we asked them about their expertise

in mathematics and programming. Figure 3.10 shows that out of the 14 players, 12 had

completed a mathematics course as part of their Bachelor’s degree, 1 as part of their

Master’s degree and 1 as part of their PhD. Since our game involves propositional

logic, we believe that a graduate-level mathematics course would not put players at any

advantage and these players performed around the average in terms of number of loop

invariants found and levels completed.

Figure 3.10: Highest education level at which players took a mathematics course
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We also asked players about their programming expertise levels and players

reported themselves to be have intermediate, advanced or professional expertise, as can

be seen in Figure 3.11. However, for these skill levels, we did not notice any indicators

that show an advantage to any player, suggesting that an intermediate level of expertise is

sufficient to play the game.

Figure 3.11: Players’ reported levels of programming expertise



Chapter 4

Related Work

4.1 CrowdMine

CrowdMine taps into humans’ ability to recognize patterns in images and pro-

poses to crowdsource the task of writing specifications for a circuit through Amazon

Mechanical Turk [31]. CrowdMine first transforms parts of a trace into images and tasks

the participants to find patterns in those images. Each trace is transformed into a 2D

image by having the rows represent signals and the columns represent cycles. A player

is awarded points based on the number of cells in an identified pattern, but is prevented

from submitting patterns that have already been found.

The game succeeds in protecting a circuit’s internal details, which can be propri-

etary. However, it suffers from a few drawbacks:

1. A 15-second time limit per level does not allow players to find complex or long

patterns.

2. By encoding different signal values as shades of colors, CrowdMine makes it

difficult for players to differentiate between a large number of signal values.

28
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By avoiding any time limitations for levels, our game allows players to find

stronger patterns after careful deliberation. This also gives them time to refine their

opponents’ invariants and move up the scoreboard. Furthermore, players in our game

rely on using variable names, their numerical values and operators to easily represent a

higher number of possible invariants.

4.2 Xylem: The Code of Plants

Xylem [35] is an iPad puzzle game for players to find loop invariants by com-

paring plants’ growth stages side-by-side, thereby avoiding exposing players to the

mathematical aspect. Each variable is represented as a flower and the number of flowers

at each loop iteration/stage represents the corresponding variable’s value at that loop iter-

ation/stage. While solving these puzzles, players move to different levels and collaborate

with other players to solve harder problems [12].

While the abstraction and collaboration attracts a large pool of players, Xylem

does suffer from a few drawbacks:

1. Despite targeting a “casual niche” audience, Xylem could only attract players with

mathematics or computer science backgrounds. Unfortunately, this meant that the

decision to use plants as a visual metaphor did not pay off.

2. Players can view at the most only two plant growth stages side-by-side, significantly

limiting the ability to find more (and complex) patterns quickly and requiring

players multiple attempts to correctly find invariants.

3. The interface design makes it cognitively difficult for players to work with a large

number of variables and a large range of values.
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Our game does not rely on visual metaphors but we do provide our audience

with tutorials, descriptions and examples to understand and use a variety of operators.

Since we represent trace data in a tabular form, with seven or more variables in some

levels from at least four loop iterations, players can find all the information they need at

a glance to generate loop invariants quickly.



Chapter 5

Conclusion and Future Work

In this thesis, we have shown how a hybrid collaborative-competitive multiplayer

game can be used to find loop invariants more efficiently than single-player games, and be

even more fun and engaging to play. In our trials, we found that players in the multiplayer

games were able to solve more problems than when they played a single-player game,

and came up relatively quickly with loop invariants – approximately taking 60% of the

time to find 60% more invariants and complete over 67% more levels. We also found

that players completed more levels and found more invariants when they played the

multiplayer game before the single-player game. These results suggest that, in addition

to the collaborative and competitive aspects of the multiplayer game, a higher level of

fun and challenge reported during the multiplayer games may be a contributing factor to

the increase in players’ efficiency.

Future studies can examine the efficacy of having more players per game and

determining whether there is a plateau or decline in players’ efficiency after a point. By

adding support for non-integer values such as Booleans and including quantifiers for

working with arrays, future versions of the game will be able to solve a wider variety

of problems. While the current implementation lies in the human computation domain,
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we expect that it is possible to reach out to a wider audience through crowdsourcing

platforms such as Amazon Mechanical Turk. Since studies have shown that the fastest

growth in players has been on the mobile platform, adapting the game to work on these

platforms may also help attract and retain players to solve problems.
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